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ABSTRACT OF THE DISSERTATION

A Perturbation Theory of the Heisenberg aAntiferromagnet

by
Donald Lynd Bullock

University of Callfornia, Los Angeles, 1963

Asslistant Professor David I, Paul, Chalrman

The determination of some physical parameters of the
ground state for the Helsenberg antiferromagnet 1ls con-
sldered, Thls problem has been completely solved hereto-
fore only lIn the cases of the energy and short range order
parameters for the linear chaln with spin one-half, In
this dissertation, the problem of more general lattices
and of arbltrary spin ls considered, and the long range
order parameter 1ls treated in addition., The results are
reported in terms of serles expansions generated by means
of a modified Raylelgh-Schrodinger perturbation theory,
which 18 proposed and developed in thlis dissertation, The
modification amounts to a process whereby the definiftion
of the zero order Hamlltonian ls changed through the pre-
dictlon and inclusion of certain infinite classes of terms,
whose first members appear in the original perturbation

serles. The final zero order Hamlltonian obtained is the




Ising model., Explicit expressions for the ground state
parameters are glven through fourth order for the linear
chain, plane quadratic, and simple cublc lattices with
arbitrary spin. The calculation 1s carried through to de-
termine the energy series through slx orders also for the
linear chain with spin one-half. A comparison with experi-
mental determinations of the long range order in real anti-
ferromagnets 1s made., In addition, the problem of the first
excited states 1s considered., A perturbation calculation
similar to that performed for the ground state is carried
out for the partition function of the Heisenberg antiferro-
magnet., The low temperature terms of this expansion are
shown to be related to the energies of the ground state and
first excited states. The calculation of the first excited
state energles is carrlied out to second order, A complete
analysis of the relationship of this perturbation method
for the ground state and first exclted states with the spin

wave treatment of the same states is carried out.




I. INTRODUCTION

This dlssertatlon concerns some physical propertlss
of the ground state of the Helsenberg antiferromagnet. The
approach 1s one of developing approximate series represen-
tations for varlous physical parameters by means of a mod-
ified Raylelgh-Schrodinger perturbation theory.

For classical and seml-classical treatments of anti-
ferromagnetlism, the problem of the ground state has been
largely lgnored, and the classical antiferromagnetic ground
state, or Neel state, has been substituted for the true
ground state, Interest in the true ground state remalns,
however, because the nature of the problem 1s such that
its solutlon lies 1n the direction of an exact solutlon for
the entire temperature range. FPFurthermore, there 1s the
question of Just how much similarity there 1s between the
physical characteristics of the true ground state and the
often substlituted Neel state.

In Chapter II, the Helsenberg model ls discussed, with
emphasls on the problems lnherent in treatments of the
antiferromagnetlic lowest energy elgenstate, Chapter III
involves the derivation of an effective Hamiltonlan, which
1s subsequently used in a modifled perturbation theory.

This modifled perturbation theory ls then proposed. The




modiflcation amounts to a process whereby the definitlon
of the zero order Hamlltonlian is changed through the pre-
diction and inclusion of certain infinite classes of terms
whose first members appear in the original perturbation
serles., The final zero order Hamlltonlan obtalned in
Chapter III is the Islng model. Perturbation serles are
then reported through the fourth order for the energy,
short range, and long range order parameters for typlcal
lattlces of one, two, and three dimensions and arbitrary
spin, Tn addition, an analysls of the relationship of
these perturbatlon corrections to the corrections gener-
ated by the spin wave theory is carried out. In Chapter
IV, the same treatment 1s applled to the first excited
states of the Helsenberg antiferromagnet, along with a
subsequent analysis of 1ts relatlonshlp to the spin wave
treatment of the same states.

The importance of this particular quantum mechanical
treatment is that it 1s a new treatment of the Heisenberg
antiferromagnet at low temperatures, Further, thls new
method is analyzed and then compared with the standard
quantum mechanical approximation ftechnlque, i.e., the
8pin wave theory, thus glving additional inslight into the

problem.

Lo




IX, THE HEISENBERG MODEL AND THE
GROUND STATE PROBLEM

A, Discusslion of the Model

Neell was the flrst to propose, and extensively inves-~
tigate, the antiferromagnetic state. The basis for his
treatment of this state i1s the model Hamiltonian introduced
by Heisenberg2 In his first paper on the theory of ferro-
magnetism, This model continues to be the most common
starting point for treatments of cooperative magnetic
phenomena in both ferro- and antiferromagnetism, as well
as in the intermedilate case of ferrimagnetismo3

The Heisenberg model 1s useful in that 1t scems to
be sufficlently representative of the physics of coopera-

3

tlive maghetism to predlct with some conslstency~” the re-
sults of experiment. In splte of thils success, however,
there remain important theoretical problems wlth regard
to the derivation and interpretation of the model, There
is always the need to derive the model unamblguously from
the full Hamiltonlian expressed In terms of electron and
nuclear coordinates, or to show that somethlng quite like
it e:;:j.s’cs.LL Such a derivation would show clearly what
constltute the limltations and omissions of the model.5

There 1s also the need for the complete mathematlical

P




solutlion of the model 1tself, l.e.; determination of the
elgenvalue spectrum and degeneracy scheme, The emphasis
in this dilssertation is with regard to a problem which
lles in the latter area,

Complete descriptions of the elgenvalue spectrum and
degeneracy scheme for the Heisenberg model do not exist,
except for the treatment of the spin one-half coupled

linear chain by Bethe,6

Even for that case, determina-
tion of the elgenvalue spectrum and degeneracy is given
only in principle. The set of cqupled trangcendental
equations which result has been solved for the energy of
the antiferromagnetic ground state7 and of the antiferro-

8 as well asg for some low-

magnetic first excited states,
lying ferromagnetilc Stateso6 The great bulk of states
whilch contribute to the thermodynamical properties at
finite temperatures remains, however;, uninvestigated,
Progress with exact solutions of even the Ising models9
which 18 a considerably simpliflied abbreviation of the
Helsenberg model, has so far falled of any exact three
dimensional treatment. The present effort is directed
toward the problem of the antlferromagnetlc ground state
for general spin and typilcal one, two, and three dimen-
sional lattices from a perturbatlion thecretic point of
view,

The mathemsatical statement of the Heisenberg model

incorporating the nearest nelghbor approximation 1s;




H=-23 Y 8.8, 1
<jg> Ik W

where J 1s the exchange Integral, and the sum is carried
out over the scalar product of all nearest neighbor palrs
of spin angular momentum operators asscclated with a given
lattice structure. Eg. (1) has both a classical and a
quantum mechanical interpretation. The determinations of
the lowest energy state when 5} and é; are considered to
be ordinary vectors, regardless of whether J is less than
(antiferromagnetism) or greater than zero (ferromagnetism),
is a trivial problem, For J > 0, all scalar products must
be maximized, giving rise to a ground state configuration
of perfect alignment which is fully determined except for
a directional degeneracylo arising from the complete 1so-
tropy of (1). Ordinarily this directional degeneracy 1s
resolved by introducing a finite anisotropy into Eg. (1).
The directional degeneracy 1s removed completely for ferro-
magnetism by the introduction of an external magnetic
field, For antiferromagnetism 1t is reduced to a double
degeneracy by the internal crystalline anlsotropy.

In the antilferromagnetic case, J < 0, the minimlzation
of H results in the minimization of the individual scalar
products only if the total lattlce can be divided into two
equivalent interlocking sublattices such that all nearest
nelghbors of a glven sublattice point lie on the other

sublattice, . Agaln, this is fully determined except for




a directional degeneracy. (In Figure 1 are shown the
clagsical ground state configurations for typlcal anti-
ferromagnets. )

Quantum mechanlcs presents no special problem in the
determination of the ground state for ferromagnetism,

It is simply the quantum mechanical analog of the classi-
cal ground state, i.e., iIndividual lattice point spin
systems 1n states of maximum angular momentum along some
common axis. For antiferromagnetism, however, the deter-
mlnation of the quantum mechanical ground state is a prob-
lem of considerable difficulty. In fact, only certaln
parameters of the antiferromagnetic ground state have been
Investigated.

For classlcal and semi-classical treatments of anti-
ferromagnetism, the problem of the ground state has been
largely lgnored, and the classical antiferromagnetic ground
state, or Neel state, has been substituted for the true
ground state, Interest in the true ground state remailns,
however, because the nature of the problem 18 such that 1ts
solutlion lies in the direction of an exact solutlon for the
entire model., Techniques which successfully treat the
ground state may be appllicable to certalin other states; and
eventually may be appllicable to all other states., Purther-
more, there is the question of Jjust how much similarity
there 1s between the physical characteristics of the true

ground state and the often substituted Neel state.




B, Theoretical Treatments of the OGround State

The one exact treatment of an antlferromagnetic ground

6 This treatment of

state has been previously mentioned.
the spin one-half coupled llnear chain provides a criterion
for the ccmparison of all approximate treatments. Approxi-
mate methods which treat well the ground state of the line~
ar chain are likely to treat well the ground state for
other spins and lattices 1f the method i1s applicable.
During the past ten years there has been much activi-
ty related to the determlnation of the physical character-~
istics of the true ground state by means of approximatlon,
The first quantum mechanical treatment for arbltrary spin
systems 1n an interlocking sublattlice structure was given

11 In 1t he applied what was qualltatively a

by Anderson.
Spin wave approximation to Eq. (l). The results are valid
for large values of the total spln of individual lattice
point systems (all lattice polnt systems having a common
total spin) and, when extrapolated to values of the spin
of order unity, give physically interesting predictions of
the sublattlice magnetization (long range order). Of
course, the ground state elgenvalues were also determined,
but since they are not susceptible to experlimental verifi-
catlon, their Importance 1s relegated to the role of com-
parison with the elgenvalues determined by other methods.

Anderson 41d polnt out; however, that 1in all cases treated

hls approximate elgenvalue lay within rigorously determined




10

12

limits for the true elgenvalue--thus establishing that

the method, at the very least, treats the energy adequate-
ly.

A special treatment of the short range order for the
spin one-half coupled linear chain was congidered by
Hulthen.7 The variational technique whilch he used was

13 and extended to an aniso-

improved upon by Kasteleljn
tropic Hamiltonlan which is a function of a parameter,

and has as 1ts limiting cases the Helsenberg and Ising
models. Kasteleijn also calculated the long range order
for this case, and the results obtalned in the Helisenberg
limit were qualitatively the same as the predictions of
the spin wave theory of Anderson., However, Orbach14 was
able to calculate the energy and short range order for
this case as a functlon of the anisotropy without approxi-
mation, and his results are materlially different from
those of Kasteleijn. This cast serlous doubt upon the
reliability of the variational treatments as applled to
the determinatlon of antiferromagnetic ground state param-
eters,

Prilor to Orbach's discovery, the variational treat-
ment of Kasteleljn had been extended to other cases,
Taketa and Nakamural5 extended the Kasteleljn treatment,
including the anisotropy parameter, to two and three di-

mensional lattices. Their results in the isotroplc limit

were in dlsagreement with those of Anderson for these
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cases, since their long range order parameters exhibited
a behavior as a function of the anisotropy which was simil-
lar to that of Kasteleijn's for the linear chaln,
Marshall,16 using the isotropic {Heisenberg) Hamil-
tonian and a combination of the varlational method and the

Bethe~Peirls approximaticnyl7

calculated the energy, short
range, and long range order parameters for two and three
dimensional spin one-half systems, obtaining predictions
which were also in conflict with the spin wave theory. On

the other hand, Kubol8

used a combingtion of the varia-
tional method and the spin wave approximation itself fo
treat lattices of one, two, and three dimensions and ar-
bitrary spin, obtaining results which were in agreement
wilith the spin wave theory except in the case of one dimen-
silon, For the one dimensional lattice, Kubo predicted an
ordered ground state; a result which 1ls in contradiction
to the spin wave theory.

C. Recent Perturbation Treatments of the
Ground State

In the past few years, three new perturbation treat-
ments of Eq. (1) for the ground state have been introduced,
The origilnal perturbation treatment of Eq. (1) consisted
of a division into the spin wave Hamiltonlan plus a per-
turbation, walkerl9 reports a perturbatlion treatment of
the energy, short range order, and long range order of the

spin one-half coupled linear chaln through sixth order,




using the Ising model as & zero order Hamiltonian, For
comparison with the exact treatments of the energy and
short range order, he derives a series solution expressed
in terms of the same parameter as was used in the pertur-
bation treatment directly from the integral equations as
given by Orbach,14 The agreement between the two seriles
is complete through sixth order,

The division of Eq. (1) used by DavisZ®

to develop a
"linked cluster" expansilon for the energy, short range

6rder, and long range order 1s
= - Z a2 _ _ad VA ‘
H, 2J<§%>[Sjuk (s sj)(s+sk)] (2)
B = -2J<§i>[(s-s§)(s+si) + (1-a)(s§s§+s§sﬂ)]c

Although H does not retain as much of Eq, (1) as does the
Ising model, it describes a system of "independent parti-
cles," for which Davls ig able to prove the existence of

a "linked cluster" expansion. Using this technique, he

is able to report perturbation corrections through the
seventh order in Hl for all three ground state parameters.
In order to improve convergence, he also reports contribu-~
tions from higher orders, which he is able to predict on
the basis of regularlties evident in the first seven oprders,

He obtains energy eigenvalues comparable with those
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obtained by other workers and predicts order in the ground
state for the Helsenberg limit of Eq. (2) for all three
dimensions,

1is

The zero order Hamiltonian consldered by Roth2
the long wavelength limit of a Fourier transform of Eq.

(1), 1.e.,

= -27%, 8> s% + 87 s + 82 SZ ) (3)
Ho 01%0; %0, * ®0,%0, * o, %0,

H, = -2 "y [s% s, + &7 &
1 & OK'Ck K, TSk

K
The prime on the summation symbol indicates the omission
of the long wavelength term, K = 0., The transformed oper-

ators are of the form

1/2
S5, = (@ %exp (1K-3) 85, (4)
S, - 3)Y° L e (-tin)sk.

The sum over J represents a sum over lattlce sites be-
longing to one of the sublattices, and the sum over k rep-
resents a sum over sltes belonging to the other sublattice.

N i1s the total number of lattice slites in the crystal, and




14

Y = L e (1K:6) (5)
with & representing the vector separation hetween nearest
neighbors, The advantage of this particular division of
Eq. (1) into zero order and perturbatlon parts is that HO
1s isotropic. The convergence properties of the serles

are similar to the Daviszo

series for the energy hefore the
inclusion of fthe terms from orders higher than the seventh.
No short range order or long range order serles have been
reported using Eq. (3).

In addition to the above three perturbation treatments
of the ground state, Boon22 has developea an energy series
based on the Iéing model as8 zero order Hamiltonian which
1s arbitrary in the spin and dimenslon of the lattice.

His results, however, are different from the resalts ob-
talned later in this dissertation for the general case.
They differ with Walker> also for the linear chain.

Table I glves the qualitative results with regard to
the predictlon of a finite sublattice magnetization for
all of the treatments mentioned previously which report
such a quantity. The results are seen to be quite con~-
tradictory, but in general, the varlatlonal treatments
predict zero sublattlice magnetization and the perturba-
tion treatments predlict a finlte sublattice magnetization.
The explanatlons generally glven for this situatlion are

the following: (1) the perturbation treatments begin with




the perfectly ordered Neel state and then carry the per-
turbatlon through only a few orders in the calculation,
resulting in a blas towards predicting sublattice mag-
netization in the ground state, and (2) the variational
treatments reflect the existence of a statistlcally large
number of low-lying states which exhibit zero sublattice
magnetization, Thus the existence of a sublattice mag-
netization in the antiferromagnetic ground state seems to
be unanswered in spite of the numerous attempts to deter-
mine it,

From an experimental point of view, real antiferro-
magnets do exhibit a sublatiice magnetization at low tem-

peratures°23’24

If the Helsenberg model is to glve a cor-~
rect pilcture for antiferromagnetism, then it must predict
a finite sublattice magnetization for, at the very least,
the ground state region., If the Helsenberg model is as-
sumed to be essentially correct for antiferromagnetism,
then 1t must be concluded that the number of low-lying
states exhiblting zero sublattice magnetlzation do not
statistically outnumber those exhiblting a finite sub-
lattice magnetization. This being the case, the predic-
tlons of the variational treatments cannot be explained
away in manner previocusly suggested. Of course, 1f the
Helsenberg model does not glve the picture for a real

antiferromagnet; then 1t may be true that the low-lying

states exhibiting zero sublattlces magnetlzation outnum-

15
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ber those with finite sublattice magnetization for the
model.

Recently, there have been some new speculations on the
exlstence of a sublattice magnetization for the Heisenberg
model antiferromagnetic ground state which affect the in-
terpretation of both the perturbation and variationzl ap-
proaches. Pratt®® has pointed out that, if the ground
state 1s non-degenerate, the time reversal symmetry of the
Hamiltonian of Eq. (1) requires the sublattice magnetiza-
tion to be zero. In addition, the same arguments may be
applied to anisotroplc Hamiltonians of the form of Ea. (2).
Karayilanis, et g;,,26 have shown that the ground state of
the spin one-half coupled linear chain is non-degenerate
for arbitrary value of the anisotropy (except for the Ising
limit), so that the arguments of Pratt certalnly apply to
this case, In the Ising limlt, there is a degeneracy in
the ground state consisting of the two time reversal sym-
metric Neel states for the linear chain which are shown in
Figure 1. Each of these states alone exhlbits perfect sub-
lattice magnetizatlion, but the correct linear combination
of them which fits onto the ground state wave function near
the Ising 1limit is the normalized sum of the two Neel
states, which exhibits zero sublattice magnetization. This
makes the prediction of zero sublattice magnetization for
the anlsotroplcally coupled linear chain with spin one-half

consistent throughout the range of the anisotropy parametexn
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In view of this development for the ground state of
the spin one-half coupled linear chain, it is important to
congider what effect a similar development for other cases
may have on the interpretation of sublattice magnetization
calculations, such as the onhe performed in this disserta-
tion. Since a sublattice magnetization must be accepted
as a property of all real antiferromagnets at very low
temperatures, and since the Helsenberg model secems essen-
tlally correct for the discussion of many properties of
real antiferromagnets, i1t will be assumed without further
discussion that the time reversal symmetry argument is
disqualifled in some way for the purposes of thls disser-
tation. This might come about through the degeneracy of
the ground state for the important three dimensicnal cases,
or through the destruction of the time reversal symmetry
by some kind of non-time~reversal-symmetric interaction.
Thus a finite sublattice magnetization will be assumed
possible; and the Neel state will be chosen for a zero
order wave function,

We now turn to the main purpose of this dissertation,
which is to propose a new perturbation approach to the

physical properties of the antiferromagnetic ground state.




III. PERTURBATION THEORY OF THE ANTIFERROMAGNETIC
GROUND STATE

A, The Effective Hamiltonlan

l. Divlislon of the Hamlltonlan

In this chaper we propose g new perturbation ap-
proach to the problem of the antiferromagnetic ground
state. We generate a series for the energy which is gen-
eral in the spin and valid for any interlocking sublattlce
system., The Ising model is taken to be the zero order ap-
proximatlion, and in this way our series differs from both

the spin wave theory911

0

the linked cluster perturbation

22 Such a zero or-

treatment-s2 and the diagram technique.
der approximation affords a means of determining the

ground state parameters without being subject to such crit-
icisms as the inclusion of non-physical states and the
omission of the dynamical interaction,28 Also, the uncon-
ventional way in which we obtain the Ising model for zero
order approximation affords a means of determining the sub-
lattice magnetization directly from the energy serles by
means of the Feynman theoremoeg This 1s not a property of
an energy serles based strictly on the Ising zero order
approximation,

The method outlined below 1s most simlilar to the work

18
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of Davisgeo but 1t differs in two important respects,
First, 1t does not require the use of a linked cluster
criterion for the determination of physical conbributlons
to the perturbatlion series., Second, 1t leads to the com-
plete recovery of the Ising model as zero-order Hamiltonlan
through four orders of the perturbation for the general
case;, and slx orders for the spin one-half coupled linear
chain., This second difference is probably the more sig-
nificant since 1t affords a basis upon which an lnstruc-~
tlve comparison with the spin wave treatment of the ground

state 1s possible,

2, Digcussion of the Anisotropy

We begin our perturbation treatment with the con-
struction of an effectlve Hamlltonian to replace Eq, (l)o
We first write Eq. (1) in a slightly different form, 1.6,

H=2J Y S%s% + J(1- s¥s*4s¥sYy, 6
<J>:k> JSk ( a)<jzk>( Jsi{[ 3 k) (6)

By introducing the parameter a and allowing thils

parameter to take on non-zero values, we are modlfying

*Here we have written the Hamlltonian so that J is
positive definite for antiferromagnetism, and thus J
carries no implicit sign change for any expression involv-
ing J.

19
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Eg. (1) to include the effects of anisotropy. In a physi-
cal sense, we are introducing a form of the anisotropic

exchange interaction which was derived by Van Vleck30 for
exchange coupled spin one-half magnetic ions, This Inter-

action takes the following form for arbltrary spln,

int, =>Z9 PO (7)

where J and k refer to different latitice slbtes, and)u and
V denote the three components of spiln angular momentum,
The Cﬁﬁg) may be determined from & second order perturba-
tion calculation invelving the spin-orbif coupling and
wave function overlap between nearest neighbor lons. For
S =1/2, all Cﬁgﬁ) with s #V are identically zero, glving
rise to a form which is comparable with the anisotropy in-
troduced in Eq. (6). Even for cases in which § # 1/2, our
form of the anisotropy is comparable with Eq. (7) provided
the Qﬁfﬁ? for M#V are sufflciently small.

In a mathematical sense, the Introducticn of the
parameter a allows Eq. (6) to represent either the Ising
model, (a=l), or the Heisenberg model, (a=0), In addition,
for a perturbation calculation based upon the Ising model
as zero order approximation, the factor (l-a) serves as a

perturbatlon parameter.




3, [Transformation to Reciprocal Lattilce Space

The commutation relations for spin operators at-

tached to the various lattlce points are

(55,8¢) = 8557, (8)
Z a™\ _ _. & -
(Sjabk) = GJI{SJ’
and
+ o=y z
(84,85) = 26,55,

where we have 1ntroduced the usual relationship between

spin components and the ralsing and lowering operators,

st = & + 197, (9)

™ = g% - 19,

Using these relationships and the transformation to recip-

rocal lattice space, l.e.,
5. = (2/MY2 ¥ exp (1A-3)5. (10)
A4 y J

and

s”_‘/’\2 = (2/N)1/2 i exp (-L0k)5,,

21
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where the summatlons over j and k represent summations over
the lattice vectors of the two raspective sublattices; we

find for Eq. (6),
+

H=272¥0,8% s%. +J(1-a)y 5(s¥ s7, +s5 sty ), (11
PNEAYA s 7\)\(7‘1 gy Sp)s ()

where

¥y = % exp (iX+6). (12)

The vector § represents the separation of nearest neighbor
lattice sltes, The conmutation relatlons in reciprocal

lattice space are
+ +
(s5 .85 ) = (2mY%__sf 4, (13)

- 1 2 -
(%,85,) = - (/Y38 s huc,
and
+ - 1/2 4
(s} ,8u) = 2(a/m)2 % _s% 4, .
We define our Neel state (l.0>) to be

s:\’ll 0> = 0, (14)
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sf;(]go> = (N/e)l/asa)\ol.o>3
83210> =0,
and
% lo> = - (n/2)Y2s5, |o>.
A0> = - (8/2)7/ %53, Jo>

Thus 10> corresponds to & product of spin elgenfunctlons,
one for each lattice site, in which all elgenfunctions on
the J sublattice (henceforth referred to as sublattlice #1)
have maximum z component of spin, and all those on the k
sublattice (henceforth referred to as sublattice #2) have
minimum z component of spin. This is perfect (i.e., clas-
slcal) anciferromagnetic ordering.

Next, we express those states in which the z com-
ponent of spin has been reduced by one on sublattice #1,
and increased by one on sublattice #2., We do not need
to investigate states in which the total z component of
spin for the wheole lattlce 13 non-zero, since the Neel
state has zero z component of spin and Eq. (11) conserves
the total z component of spin. The states described above

are of the form

353;1.o>, (15)




where j and k are arbitrary lattlice sites in each of the
two sublattices. In reciprocal lattice space Eq, (15) be-
comes

WN))EA exp [-1(Aoj+ﬂ,k)]sﬁs;2|.o>., (16)

The natural extension of Eq. (15) to other states with
total z component of spin equal to zero, e.g., for a typi-

cal state

- - o + + +
[(531)(832)'°°(”Jn)] X [(Skl)(ske)oao(sk_)]io>,

n (17)

results in a reciprocal lattice wave functlon which is a

linear combination of terms of the form

W= ;f Bl(a,\)Bz(a)J(sgl)ah(s/;ig)a”‘fw (18)
P

where z:a = E:a = n, Thus we may take as represen~
tative of a typlcal wave function involving the reciprocal
lattice spin operators and having total z component of
spin equal to zero.

4, Construction and Physical Significance of the
Effectlve Hamiltonian

We now define an effective Hamiltonian to replace Eq,
(11). We begin by writing Eq. (11) as the sum of three

24




terms,
= 23) §,8% &%, ,
H, <IN B0, (19)

= J(1-a)) ¥, s; st ,
Hﬁ N A Al %2

Hy = J(1-a) T¥,sF 87, .
p = J( )72\2\/\1-;\2

The second and third terms of Eq. (19) have the following
physical signlficance: the second term decreases the z
component of angular momentum on sublattlce #1 by one unit,
while simultaneously ralsing the z component of angular
momentum on sublattice #2 by one unit, When applied to
the Neel state described by Eq. (14), we may think of Hy
as raising the Neel state to an excited state, This prop-
erty of HU 1s the reason for choosing the subscript U to
denote thilis term of the Hamliltonian., The operator H.U
raises a gilven state "up" from the point of view of the
number of exciltations present over the original Neel state.
Correspondingly, the operator HD lowers the number of ex-
citations "down" from the number of excltations present,
We shall leave HU and Hb unchanged from theilr form in Eq,
(18), and shall incorporate them directly into our new
effective Hamlltonian, We derive this form by applying‘Hé
to the typical wave function of Eg. (18). H, ﬁéy then be

25




commubted through all of the operators in LP until it oper-
ates directly on the Neel state. The resulting extra terms
all involve z component spin operators which are also com-
muted through all operators until they operate upon the
Neel state, Since the Neel state is an eigenfunction of
all z component spin operators, we may replace them wlth

thelr eigenvalues to obtailn

AT M
4 -
) _Ng.)\‘ 2t LYp(Sp) €Ly ) (5,07
(520g) P (20)

where E, = -2J82(Nb’o/2), o= MJS‘KO, and
(Sx,)7E(s5,) =1,

(st

(S;%) /ué) = 1.

Eq. (20) indicates that the Ising interaction may be
expressed by the sum of two parts., The first part consists
of a Hamiltonlan which describes independent excitatlons
above the Neel state, and the second part describes an In-

teraction between these excitations. If we wrlte the
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Hamiltonian of the intersction as Hi, then our effective
Hamiltonian takes the formBl

Hopp = Hy + Hyp + Hy + Hp, (21)

The operator form for Hb is

Hy = 2d (%)l/ 2§\X)\5)\0{('12!)1/ 252 - s/z\l + 82 /\2},
(22)

but we may always represent Eq. (22) by its elgenvalues
in the work that follows.
Having defined the effective Hamlltonlan, we are now

in a position to apply perturbation theory to Eq. (21).

B., The Appllcation of a Modified Raylelgh-Schrodinger
Perturbation Theory to the Neel State

1. The Modifiled Perturbation Method

We divide Eq., (21) into zero order and perturba-
tion Hamliltonlans,

Hy = E, +%(§ axt 2 au) s (23)

and
Hy = Hy + Hy + Hy (24)

The LP as defined constitute eigenfunctions of Hb.




We do not consider a particular choice of (P to span the

(2S+1)N dimensional spin space of interest, but only refer %
to the fact that such a cholce exists,31 Taking the Neel
state for our zero order wave function, qjo, we have upon |

application to the Raylelgh-Schrodinger perturbation

theory,
HYo = oo (25a)
By + HJ.LPO = By + B P (25b)
HWo + B Y1 = P2 + B Py + EjPos  (250) |
ete.

The flrst order correction te the wave function, q)l,
may be expressed as a sum of contributions Involving dif-

ferent numbers of "independent" excitations, i.e.,

¢, = g!):(LO) + Py +q)£2) +oens (26)

- T,

where

QP:EO) = a{%105,

pfr) - ()an:f“( 1) (T, )10%




etc, Here we have restricted Q)l to contributions of the
form of Eq. (18) having an equal number of spin operators
for each sublattice, Such contrlibutions satisfy the elgen-

value equation,

z (n) _
Stota1 V1 0,

where Siotal is the operator for the total z component of

b4 4
%sj +§sk,

That only such contributions are necessary for the expan-

z =
spin for the entire lattice, l.e., S y.q =

sion of (Pl (or any higher order correction to the wave
functlon q)) follows from the two propertles of H; and Q)O,
Stﬁtalq)o = 0; and (Siotal’ H;) = 0. In other words, the
perturbation H, does not connect Q)O with any states having
a different total z component of spin., We have previously
discussed thils property wilth respect to the total Hamil-
tonian, Eq. (11), but 1t 1s necessary here to specify it
for the individual zero order and perturbation Hamiltoni-
ans,

Thus we have expressed q)l in terms of a set qjén),
where kp&n) 1s a linear combination of states of the lat-
tlce wherein there are n spin operators SX& on sublattice
#1, and n spin operators Std‘ on sublattice #2. We notice

2
that the q):f_n) are orthogonal in n. Further,

Ho‘an) = (B, + nA)%n), (e7)

29
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and thus from Eq. (25b) we get

(n)
o opi”

(E~Hyp) P oo (28)

since qu)o =0, and H 0. On the left of Eq. (28)

DY O
are a set of contributions to q)l arising from orthogonal
subspaces of the original (28+1)N dimensional spin space,
and Eq. (28) must be satisfied separately in each of these
subspaces. The components of Hi have three Ilmportant

properties with respect to kp(n)3

g () < gne) (29)

(1) o gln),
and

HD(P(n) = g(n'l).

HU transforms a function QP(n), defined entirely in the
subspace n, into a function ¢(n+1)’ which 1s defined en-
tirely in the subspace n + 1, Hi leaves“ﬁnchanged the sub-
space in which q)(n) 18 deflined, and HD transforms q)(n)
into a function ﬁ(n-l), which 18 entirely defined within
the subspace n = 1.

In the n = 0 subspace we have from Eq. (28),




31
and therefore

For n = 1 we have

Z‘\“q)::{l) = - HUq)O’

and therafore
(l a8 e -!'; @
Py ) 5 ByPo-

For n > 2 we f£ind that q)£n)= 0, 30 the first order of the
perturbation yields

E = By, (30)

and
$ =Py - 285 oo

since q)éo) = 0 in general.
Extending this procedure to higher order, and intro-
duclng the slmplified notation

Hy =0, (31)




Hi = I,
and
H@ =D

we find for the energy corrections through the sixth order
E =0, (32)

E, = - L<pus

> A 9

E3 = 1/52<DIU>,

Ey = 1/a3[<00>? - <p1fu> - 2<p?us],

=3
il

5 1A% -3<pu><pzu> + <DI3U> + <DZUIU> + %;—<D21U2>],

1/AB[ ~2<DU>S + U<DU><DIU> + 7/4<DU><DU>>

&
]

+ 2<DIU>S - £<pIDIV®> - <DPUIZU>

b - F<0?r?u?>

1

-}I<D2UDU2> - <DI

%2-<D3U3> - Z<DIDUIU>],

where all expectatlon values are understood to be taken

wlth regpect to the Neel state.
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2. The N-body Divergence Problem

When we calculate explicitly the value of the
brackets, the brackets which contaln a single D operator
and a single U operator are found to be proportional to N,
the total number of lattice sites in the crystal. Brackets
Wwith more than a single D and U are of a higher order of N,
Thus, all terms of the En which are products of two or more
brackets are at least of the order of Nzg and do not repre-
sent a physical contribution to the En° The argument given
for this conclusion is that if E ~ N°, then E~ N°, and
the energy per lattice site, E/N, becomes unbounded as the
number of lattice sites increases, i.e., limN_?mE/N-—>ah
This is also true for higher powers of N. However, these
non-physical terms are only apparent, for contained impli-
¢itly in other terms of the same order we find the negative
of these terms.

Before we examlne this cancellation for all six or-
ders of Eq. (32), we investigate this cancellation in a
related problem, i.e., that of a perturbation Hamiltonian
consisting solely of the operators D and U. In other

words, we assume I = 0., Our energy terms are then

E; =0, (33)




E} =£§§[<DU>2 - %<D2U2>],

E

5 = 0

and

V1, o2 2 2 12 2 1 .33
Ef _0;5[ 2<pu>? + f<D°UP><Du> F<0°UDU®> T§<D3U >7.

We proceed to calculate these terms explicitly in arder to
show the cancellation of multiple bracket terms,
In E; we find that <DU> 2 <Q>, where Q = {D,U), the

commutator of D and U, For <@ we find

2/, .12 NY
<@ = U;Qa) (—2)4(8%,)2. (34)
0

In E} it is found that <D2U%> = 2<g>° + <F>, where
F = [D(Q,U)]. A calculation of <F> yields

boo \4 Y, Y1
0 (35)

In Ef we find that <D°US> = 6<@> + 9<@><F> + 2<R'R>
+ <V>, where R = (Q,U) and V = [D(F,U)]. A calculation of

34
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<R'R> and <v> yields

R = L %“gL( 20)2 (sx)2 (36)
0

(15, 2-45Y_+40) Y -1 !
X [4(836)4 0 7 0 - 48(356)3.95_
0 0
o (Y, B431,-3)
+ 4(8¥,) = - 8(8%,) + 11,

JO
and

(15Y,2-45 ¥, +4o)

6 N
<U> = J (l-a ( go 2 (350)2 x [4(85’0)4

?fo 304
¥ -1 5¥ 2436~
- 120(s¥, )3 9~ +8(s S9,) —(——O——Q——B)— (37)
(o %

-38(SKO) + 7] °

Using Egs. (34)-(37) in conjunction with Eq. (33), the

energy correction through slx orders is found to be

2 NY
5= - %(—ggusxo), (38)
0




4 NY
J(l-a Oyv__ 1
RETARRIC)

53]
L=
il

2%t
b4 [6(82(0) -5 - 4(3?)/0) + 11,
56

and

_ J(l-A)6<Na/O) 1

643,2" 2 "(sy,)3
15 2-45%, +40 ¥o-1
x [8(3(0)4( o 0 - 120(5Y,)3-25-
1§ Y
0 0
251?02 + 6¥,-6
+ 8(8%;,) 5 - 29(8y,) + 41.

%o

Fach finlte energy correction ls strictly proportional to
N,

Returning to the consideration of the total perturba-
tion Hamiltonian, Eq. (24), we collect together all terms
of Eq. (32) which are proportional to (l-a)z,

(1-2)%_ 1

E§ | Levus, (39)
2

Egl-a) = —3-*5 <DIU>,
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2
Eﬁl-a) =—%«DIQU>,
AN
r(1-a)® - L<o13u>,
5 H
and
2
g8 = - —15-<D14U>.
A
Since
TUlo> = - 2JUl.0>, (40)

these energy corrections are manlfestly proportional to N
in view of Eq. (34).

For the contributions proportional to (1-a)4, three
of them have been calculated explicltly, l.e.,

E} = —13- <DU>° - %<D2U2>}, (41)

i
Eél_a) = - —171{3<DU><DIU> - <D°UTU> - %I<D21U2>},
A
and

4
Eél-a) = -15—{4<DU><D12U> + 2<DIUSS - -]2'<DIDIU2>
N

- <DUT?U> - %<D212U2> - %—<DIDUIU>},
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Using Eq. (40) and the similar relationships,

102l 0> = - 23[2ulo> + 2,0, 1051, (42)
where
U, Uy o> = (B)5%(1-a)2 ¥ Ub’ ;
AU
x (S}ﬁﬁ)(s—x M) S ylos,  (43)
and

2,2 IR
Ulo> = (-23) {4U lo> + 10U1U1,lo> + 2U12,U1,21.0>},
(b4)

where

U 0iUp 100> = (B)%58(1-0)2 1 XA% Y, (45)

g
ATx W M

% (8 ) (805 1)) (8 ) (ST Mo,

4 4
we find for Elgl'a) B Eél'a) , and Eél-a)u,
4 .
1~ 1
mjt-a)” - - 5P, (46)
Gz b - U,
- 2
Eé* 2) A——&{2<F> + 4 (; a)” ( 2°)16(s>r) }

0]
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and

Eél"a)4 = !:?%)E{%w
A

) 4 NY AT ]
2437 (1-a) 0 4,50 "o
SR ) <w“02 )}

From Eq. (35), these energy corrections are also manifest-

ly proportional to N,

3. The Recovery of the Ising Model as
Zero Order Hamiltonlan

Examination of Eq. (39) indicates that a very
regular sSeries is developlng for the terms proportional to
(1—3.)2° If we project this regularity to orders higher
than the sixth, we obtain for the entire contribution to

the energy which is proportional to (1~a)2,

PRy Q n
gl1-a)" o . —1A-n§0(— ) ortu> = - S, (47)

in view of Eq. (40). By predicting and including all terms
proportional to (1-a)2 in the energy correction, we are ef-
fectively recovering the Ising model as zero order Hamll-
tonlan to second order in the perturbation.

In order to recover the Ising model through fourth
order, we must be able to determine the regularities in the

energy corrections which are proportional to (l-a)u, which




4o
we may represent by the expression

I3 E(l’a)n.

n=4 B
Assuming that terms proportional to powers of N greater
than one are always cancelled out of our energy correc-
tion in each order n, as they were for n = 4, 5, and 6,
the physically important part of the energy corrections 1ls
entirely contained in the single bracketed terms, These

terms have the general form if proportional to (l-a)4
<pIPpr™u1%>; p, m, q integer. (48)

This is shown explicitly below. It 1s only necessary to
reduce the terms of Eq. (48), i.e., remove contributions
proportional to powers of N greater than one, to obtain

the non-vanishing contribution to the perturbation correc-
tion, If we indlcate a reduced term by a subscript R, then
the entire contributlion to the energy series whilch 1is pro-

portional to (1-a)4 may be written

b oo p+q+m
m(1-2)" . _ L7 (- -E-}n—<DIPDImuqu>R.
D, q,m=0 (49)

If we let m+p + 4 =0, we get the single bracketed term
-a )4
in E£1 a) » Letting p +m + q = 1 ylelds three single




bracketed terms, two of whlch are equivalent because of the
Hermitian property of the brackets, l.e.,

<D?uIU> = <D°UTUst = <uTTtutpots = <DIDUPS. (50)

Thus p + g + m = 1 ylelds the single bracketed terms in
Eél-a)q. Putting p + @ + m = 2 yields the single bracketed
terms in Eél-a)4’ provided we use the Hermi%lan propertiles
of the individual brackets.

With Eq. (40), together with the relationship

%105 = (-2J)mf2mu2lo> + 2(3"-2™Mvu,u,, o>
| 11
+ (4M-2-3" 2Mu 1,210>} (51)
n
we find for E(l—a)

(1-a)" _ 1 {
el = -t <F>+—-—<DUU
2&3—2J)3 -3J 17117

+ 27)2 DU, 4 U, | o> (52)
S(A-4d) (a-37 121U112”R]

A similar treatment of the terms in Eq. (32) which
are proportlonal to (l~a)6 may be undertaken, The expres-
sion equivalent to Eq. (49) for these terms, subject to

the assumptions made in obtailning Eq. (49), is
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E(l-a)6 _ 1 oo _ lhm+p+q+r+s 11
m12A5 Y A TS g
m;pP,d, P, 8=0
x [<DIpDIrDImUISUIqU>R
+ 3m+1<DIpDIrUImDISUIqU>R]. (53)

In Appendix A we give the reduced form for Egq. (53),
and perform the sums. The resulting expression for the
general case 1is 8o unwieldy that it was determined that
the additional correction obtained from calculating Eq.
(53) was not worth the effort. It did, however, seem im-
portant to carry out the calculation of Eq. (53) for the
8pin one-half coupled linear chain, whlch is done in Appen-
dix A, The numerical result is the same as that of a per-
turbation series developed by W'alk.erl9 for this partlcular
case, thus confirming our development of a perturbation

Serles with the Ising model as zero order Hamiltonlan,

C, The Perturbation Series for the Energy

l. The Second and Fourth Order Correctlions
for the General Cases

For arbitrary spin and for the linear chain, plane
quadratic, and simple cubic lattlces, the series expansion

in powers of (l-a)2 for the energy is

E = B[l + Cy(1-a)2 + ¢y(1-a)" + 0g(1-2)® + ...1(54)
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where

C =
b a6(st)[2a(sy) - 115[4(sYy) - 310(SYy) - 1]

46 )62 + 155, - 15

x [192(88,)°-25 - 16(s4,) .
% %
35%° + 3553 2220,° + 9¥,-9
+ 32(8%) NI -
0 %
+ 2k(sYy) - 31.

In Table II are listed the values of 02 and 04 for the
three lattices, where the spin 1s varied from 8 = 1/2 to
S = 2., We also give the normalized (to the Ising ground
state energy) energy for the isotropic case, a = 0, These
are necessarily positive, and thus the larger the numeri-
cal result, the lower the corresponding ground state ener-
gy. For comparison we give the results obtained by the
linked spin cluster method of Davisgo for the equivalent
of 02 and Cu, and for the normalized energy through terms
of the order of (l-a))+ (Linked Cluster I in the table).
We also repeat the flnal normalized energy reported for

the linked spin cluster method, which includes part of the




Ly

contribution from terms of the order of (1—a)6 (Linked
Cluster II in the Table). Thus the dlfference between the
final reported normalized energy and the normallzed energy
through terms of the order of (l—a)4 for the linked spin
cluster method (Linked Cluster II and I, respectively) lies
with the partial calculation of C6 performed by him.

For the linear chain with 8 = 1/2, we obtaln the quilte
respectable value of 1.7500 for the normalized energy. The
exact energy elgenvalue to five figures 1s 1.7726°7 This
may be compared wlth the spin wave ground state energy of
1.726811 and the linked spin cluster result of 1.7363.

Upon investlgating Table II, we find thils work to yileld
lower elgenvalues than that of the linked spin cluster
method for the cases in which the spin, S, and/or the di-
mensionality of the lattice is small. The partial calcu-
lation of 04 in Linked Cluster II appears to be sufficlent
for the two dimensional lattice when S > 3/2, and for the
three dimensional lattice when S > 1, For the one dimen-
slonal lattice, the partial calculation of 04 does not
seem to be adequate.

2. 'The Energy Series lIn the Spin Wave Theory
as a Punctlion of Ising Anlsotropy

Turning to an examlnation of the spin wave theory

11

of the antiferromagnetic ground state and 1ts first or-

32

der correctlon given by Oguchi, we determine 1lts rela-

tionshlp to the present work. The spln wave theory has
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proved to provlide the most successful description of a
Helsenberg antiferromagnet at temperatures T >> TN (TN =
Neel temperature) short of an exact treatment qf the model,
and consequently one expects 1t to glve an adequate de-
scription of the ground state. The spln wave Hamlltonlan
ig obtained from Eq. (6) by replacing the angular momen-
tum operators wlth equivalent operators, written in terms
of the operators applicable to the problem of the lilnear

harmonic oscillator, l.e.;

=38 - njs (55)

st = (25)Y2(1 - nj/zs)1/=aj,

2
|

- (28)1/2a;(1 - nJ/zs)l/g,

14
Sk = - S + Ny
sp = (29)Y/2](1 - n/29)1/2,

s; = (28)Y/2(1 - n_s28)Y/ %0y,

where
_ *
*
. = byby,




and

* b-ﬂ!—
bkbk - kbk b 10
Substitution of the operators of Eq. (55) into Eq. (6)
yields

2 NG
H = - 2J8%(—>) + 2JS?/O(%nj+l%nk) (56)

+ 275(1-a) ¥ (1 - nj/QS)l/Qa

(1 - nk/zs)l/ 2y
<Jic>

b k

278(1-a) L a5(1 - n,/28) (1 - n,/28)1/?
+ 2J5( a)<3k>a3( n,/28)" “p (1 - ny/28)

-~ 2J E: N4y,
<jk> I K

which, to order 1/S in the binomial expansion of the op-
erators (1 - nJ/2S)l/2, ete., equals

st
1

NY
255®(—2) + 2JSZJ’O(%nJ+L§an) (57)

+ 238(1-a) 2 (a.b +a oo

%J(l-a)[<§%>(njajbk+ajnkbk+afnjb;+a;b;nk)]

d
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. .
<ji> I K

The first three terms of Eq. (57) constitute the spin
wave approximation, and the last two terms constitute the
perturbation Hamiltonian considered by Oguchi., If the
first term of Eq. (57) 1s considered to be of order unity,
then the spin wave approximation is correct to order 1/S,
and all of Eq. (57) is correct to order 1/82.

We repeat the spin wave calculation, and the Oguchl
correction, to the ground state because of the insertion
of the anisotropy parameter (1-a) in Eq. (57)‘° It will
subsequently be shown that when a = 0, we optain the re-
sults reported by Anderson and Oguchl. For the purpose of
extracting the long range order parameter from our expres-
sion in later sections,we add to Eq. (57) the additional

anlsotropy

Honis = %AHA(%S?%SLZ:) = gﬁHA[SN '% Ny - zlzcnk:]‘
(58)

Eq. (58) represents the anisotropy provided by an effec-
tive field which is directed oppositely on each sublattice,
but it is inserted here simply because it allows the sub-
lattice magnetlization to be determined from the energy
series by means of the Feynman theorem.29
The diagonalization of the spin wave Hamiltonlan is

accomplished by means of two successive canonlcal trans-

@




formations, The first transformation is to the operators

belonging to the reciprocal lattice,
a, = ({"3)1/232 exp (12+9)ay, (59)
»* - _?_ 1/2 - *
ay (N g: exp ( iA»J)aJ,

by = (BYEL e (e,

by = (-%)1/2% exp (ek)by.

With these transformations, Eq. (57) plus Eq. (58) be-

comes

Y,
H=- 2J82(—1Y—29-) + 2g/gSHA(-1§) (60)

H
+ 2sz0(1 + ?J—SATO)% (a;a/\+b:b/\)]

¥* %
+ 2J8(1-a) ‘é\};\(a)\bAﬂAb;\)

- 23(1-a)(B) Y [8(A =AMt at a, a, b
Woaggn, 1 25,20 220,

*
PN AP
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® % %
+ 6(=A1+A2—A3+A4)%A2§R1bA2aA3aA4

* K ¥

- 23(2 Ay -A= Aty NENLVLIVE
PG ) oS BN 2%

Using the transformation to spin wave creation and destruc-

tion operators,
a) = %) coshe - 4} sinhe,, (61)

by = -o(/ie sinh® + 4, cosh 6),

3

a) = O coshe, - 4y sinhe),

b¥ = ~ o, sinhey + A4 coshd
) = ) sinhy ) coshe,

with

XA‘(l-a)
29)& = D=1+
Kb

84H,

tanh 2Jsab ?

we can diagonalize the spin wave Hamiltonian [the first
four terms of Eq. (60)], resulting in

2, N5, N
Hgy = 298%(—") + 2g4H,(3)S (62)




50

i 2(1-2)2 12

, % 3 2
+2Js‘53§[oq)\aA+/§Aé\][D - 502

L

2,1 12

¥ (1 1/2

- gJSbTOZ{D - [P - A a) ] }
o

Por the ground state, <D(§0(> = 0 and </g%;\/g> = 0, and
if also HA = 0 we get for the energy of the ground state

o NE, 7, 2(1-a)% 1/2
E = - 2J8%( 2) "‘255?702':{ - [1-—2‘“—-5—2,-———] }

(63)

which is Anderson's result when a = 0,

If we compute the first order perturbation correction
to Eg. (63) using the remaining terms of Eq. (60) as a
perturbation Hamiltonian, we obtain the equlvalent of the
ground state energy correctlion obtailned by Oguchl, but

with the insertion of the anisotropy parameter (l-a).

_ K/g,\2(1'2)2
Ny Too
2,790, 22y 1
o = - e ) L S E e
(D2- A"A—"—"“g—*)
XO

(64)
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éme(l'a)z
-
0
% L -1
2 G \lma)" o
(D 5—)
L b
o i
%2042 ¥,2(1-a)2 1/2
+ a(e-a)(1-a)2 Dt (P - 221
5o o
2 2
(02 - % (1-a) )-1/%
)
0

which ylelds Oguchl's correction when a = 0.

Table III glves the elgenvalues E + AE for the cases
investigated in Table II. In most cases, the spln wave
theory plus the Oguchl correctlon ylelds elgenvalues which
are lower than those ylelded by our method., However, the
correction for the linear chain with S = 1/2 badly over-
shoots the exact eigenvalue, while for the same lattice
with S = 1 our method gives an eigenvalue which lies lower
than that of the corrected spin wave theory. This oscilla-
tory behavior of the corrected spln wave theory seems to
be a property of the smallness of the spin, for a similar
behavlior may be seen in the plane quadradic and simple cu-
bic lattices. Of course there are no exact values with
which to compare in the two and three dimensional cases,

and the oscillatory behavior is inferred from the behavior




of the corrected spin wave elgenvalues relative to those
of our method,

3. Comparlson of the Energy Seriles from the
pin Wave Theory with that of the Perturbation

Theory
The relationship between the spin wave approach

and the modifled perturbation approach may be determined

in a more elaborate manner than by &2 simple comparison

of elgenvalues, Thils 1s posslible because of the presence
of the two expansion parameters, 1/830 and (1~a)2, common
to the energy serles of both methods., The entire contribu-
tion to the normalized energy elgenvalue of the antiferro-
magnetic ground state resulting from a continuation of
elther of the above methods may be expressed in the follow-

ing general form,

E/Ey =1 + n’%ﬂam(l-a)%(l/sao)m, (65)

Examination of Eq. (54) and Eq. (65) reveal the fol-

lowing relationships,;
oo m
C, = mf;lalm(l/sro) . (66)

L = Y
c a, (1/5Y¥,)%
1 2n(1/8%)%,

Ul
n
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and examination of Eq. (63), Eq. (64), and Eq. (65) yields

oD
; , =L Z 2n
Spin Wave Correction = w5— a . (l-a)<",
Sty p=y 0L
(672)
Oguchl Correction or e
First Order Perturbationt _ __ 1 Y a (l_a)Qn
Correction to the Spin (s )2 n=1 P2 °
Wave Theory 0 (67b)

From Eq. (54), we can develop the first few terms of
Eq. (66) explicitly, and from Eq. (63) and Eq. (64) we can
develop the first few terms of Eqs., (67a,b) explicitly.

The terms which are common to Eq. (66) and Eqs. (67a,Db)
are

a); =1/2, (68)
4y, = 1/4,
4s; < (SEQ:;l s
866

3(¥5-May )
16%,°

8op

Eq. (65) may be expressed in a tabular form, in which




the rows are labeled according to powers of (1~a)29 and the

columns by powers of 1/S¥..

1 1 1 1
E_ | (69)
Bt Sho | (555)%] (855)% | (35,)"
2 i
(1-a)% 315 | ayp a3 2
4
(1-a)"lay | ag 2o o)
6
(1-a) 231 | 232 233

(1~a)8 ayy | 2y

Spin wave theory and lts successive corrections cor-
respond to adding the terms in the next column to the pre-
vious results., Beglnning wlth the Ising model for a zero
order Hamiltonian and computing succeeding orders of the
perturbation corresponds to taking into account the terms

of successive rows.

4, A Hybrid Theory

It now becomes possible to take advantage of all
of the terms in Eq. (69) in both the first two columns and
the first two rows to compute the ground state energy ei-
genvalue, This is done simply by adding together 025 04,
spin wave correction, and first order (Oguchl) correction.
The twice counted terms, 8y1s 81ps Bpys Bpgs 8T then sub-

tracted from the resulting sum. These results are

54
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presented in Table III under the heading "Hybrid Method."
The hybrid method yields an eigenvalue lying lower than
elther the corrected spln wave or the method of this dis-
sertation, except for the spin one~half cases and the sim-
ple cubic spin two case.

The corrected spin wave theory may be expected to ap-
proach the exact elgenvalue for large spin and number of
nearest neighbors. For the spin one-half cases, however,
the apparently "better" (i.e., lower) eigenvalues produced
by the corrected spln wave theory may be misleading. In
the spin one-half linear chain, fThe lower elgenvalue glven
by the corrected spin wave theory must be ralsed by addi-
tional corrections, because it lles a great deal lower than
the exact elgenvalue, In this particular case, the hybrid
theory ylelds an elgenvalue whilch 1s less than %% in error,
It seems likely that because of the behavior of the cor-
rected spin wave elgenvalues which was polnted out at the
end of Part (2), Section C of this chapter, the hybrid
method glves the best elgenvalues, except as the spin gets
relatively large,

We now turn to the consideration of the short and
long range order parameters for the antiferromagnetic

ground state.

i




D. Short and Long Range Order

l. The Feynman Theorem

There 1s a theorem due to Feynmanfg which we now
need 1ln order to determine a perturbatlon series for the
short and long range order parameters from the serles for
the energy. Brilefly, the theorem is thils: Glven the

elgenvalue equation

HA) D) = T(A) P(A (70)

where H()\) is an operator expressed as a function of a

parameter A, then

_a_.g.()_\&x - jw*(?\)——a}%ﬂa')m)av, (71)

For a proof of Eq. (71), the reader is referred to the

article by Feynman,eg

2, The Short Range Order in the Modified
Perturbation Theory

Once the short range order parameter has been
defined, the Feynman theorem may be used to generate the
corresponding series from the energy serles., However, it
1s necessary that the Hamiltonlan be expressed as an ex-
pliclt functlon of the short range order operator. The
natural definitlon of the short range order operator 1s

one which measures local spin correlation along some pre-
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ferred axis, l.e.,

Z %
o = < L e
s2(—2)

nop is the average spin correlatlon along the axls of an-
isotropy between spin systems on neighboring lattic sites,
It is normalized so that for perfect ferromagnetic ordering
<%gp> = 1, for a system of completely independent spin sys-
tems, <qop> = 0, and for perfect antiferromagnetlic order-
ing, <nQp> = -1,

In terms of the Hamlltonian of Eg. (6), and thus also

of Eq. (21), the short range order operator takes the form

Nop = 5w (3 + (-a)FIH. (73)
2752 (=2 5 0y

Application of the Feynman theorem to Eq, (54) then yields

72= <%%p>true ground state (74)
a-—-———-l'—--—-- - i_ - 2
" N()‘O [1+ (1 a)aa] Ey[1 + Cy(1-a)
2J8°(—%=

+ 04(1-a)4 + ,,,]}

LN °

= -1+ cy(1-a)? + 394(1-31)4 + 50g(1-2)° +




Values of /] in the isotropic limit (a=0), determined from
Eq., (74)9 are glven in Table IV, It 1z interesting to com-
pare the approximate value of ng determined from Eq. (T4),
wlth the exact value of ﬁ in the lsotropic limit, deter-

mined by ()11°1:>a@11:3“LL

for the spin one-half coupled linear
chain. These are, respectively, 7| = -0,7500 and 7] =
~0,5909, Thus, Eq, (74) does not represent the short range
order with nearly the accuracy with which Eq. (54) repre-
sents the energy to this order in the perturbation. In
Appendix A we determine 06 to be zero for the spin one-
half ¢oupled linear chain, so that the value Of'q is not
further modified untll the eighth order of the perturbation,
In Section E of this chapter, we will discuss further the
properties of the short range order serieé for this par-
ticular case in conjunction with a discussion on the con-
vergence properties of the energy, short range order, and
long range order serles for the general case,

3. The Short Range Order in the Corrected
Spin Wave Theory

Application of Eq. (73) to the spin wave perturba-
tion expansion of the energy, Eq. (63) plus Eq, (64),
yields the short range order as determined by the corrected

spin wave Theory,

ngul‘l-GlTS“%O"'i'Gz("sl-—%')g"koee.’ (75)




where

¥,2 1/2
6 = 53T [a- 25123 - 11,
L

‘ Y, 1/2
6 =12@% i - (- Ay
AP | 0
¥, 2 1/2
0 2
x[1-(1 -b—,—g-(l-a) )
0
2 2 Y
- 2 £5(1-2)%(1 - £5(1-0)%) ]
0 7o
2 2
% Y -1/2
+ [(1-2)2 - 3(1-a)4][41§(1 - 415(1'3)2) !
¥ S
0 0
2 2
J, -1/2
[924-2-(1 - £5(1-a)?) / ]+ 2 [(1-a)* - (1-2)°]
% T
2 2 4 2
% -1/2 &, Y, ~3/2
[—43(1 - -b-;;\—é-(l-a)e) ][‘&[;(1 - —"i—g-(l“a)e) L
3(o % % %

Values of Q in the isotropic limit (a = 0), determined from
Eq. (75) through G,, are given in Table IV, However, no
values are given for n in this approximation for the linear
chaln. This is because Eq. (75) is indeterminate for the
one dimenslonal lattice. Both Gl and G, are not finite for




this case, and thus this indeterminacy is independent of
the spin, This behavior is definitely a property of the
approximation, and not of the short range order parameter,

14 we know the short range order

since from Orbach's work
in the isotropic limit of the spin one-half coupled linear
chain to be finite. We will find this behavior to be true
also of the long range order for this lattlce, when it is
determined by means of the spin wave approximation. It is
most likely due to the convergence properties of the series
for these cases, i.e.,, when the terms in the series for the
short and long range order are expressed in a form simllar
to that of Eq. (69) for the energy, convergence depends up-
on the order in which the terms are added up. If they are
added up by rows (modified perturbation theory), conver=-
gence is evident, and 1f they are added up by columns

(spin wave approximation), the series diverges.

- In Table IV, we also include the short range order
parameter as determined by the hybrlid method of Section 5;
Part (4) of this chapter.

4, Comparison of the Methods for the
Determination of the Short Range Order

In view of the fact that the corrected spin wave
theory is inadequate for the determination of the short
range order of the only case for wiich the exact value 1s
known, no absolute comparison of tie methods is possible

at present., Since the spin wave approximatlion represents
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an expansion in powers of 1/8569 one expects 1t to be the
best method when the spin and dimensionality of the lattilce
are large. However, as has already been pointed out, the
short range order serles diverges for the linear chaln no
matter how small the expansion parameter, and thus one can-
not fully depend upon this criterion, We conclude that,
for the short range order parameter, the modified perturba-
tion theory gilves the more meaningful prediction. This
conclusion will be borne out in the discusslon of the rel-
ative convergence of the series generated by the two meth-~
ods which appears in Section E of thls chapter.

5. The Long Range Order in the Modified
Perturbation Theory

The choice of an operator to represent the long
range order 1s restricted here by the conditlions necessary
for the application of the Feynman theorem. The natural
extension of the operator which was used to represent the
short range order would be one which measured the spin

correlation along the axis of anlisotropy, l.e.;

_ 1 o242
Pop = Lim SQSJSJJ,_5 s (76)

§>o0

or one which measures the general spin correlation,

1 = o

FOP == ];gim -S—(-STfySJOSJ+5° (77)

- OO
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The correlatlion is measured between spin systems which lle
_ at large distances from esach other, hence the concept of
long range order, When a wave function is available;, such
definitions of the long range order operator as Eqs., (76-
77) are possibleg33 but when use 1s made of the Feynman
theorem, the condition that the Hamiltonlan must be an
explicit function of the long range order operator pre-
vents the adoption of either Eq. (76) or Eq., (77). Con-
sequently, we are constralined to use the concept of the
sublattice magnetizatlon, which bears some reslationship to
Eq. (76).

The sublattice magnetlization operator may be expressed

as follows:

bor = S5 5

i

S opAia)

.1
=1 - 5%/%) %a)&

Thus, for perfect order, <€> =+ 1, depending upon the di-
rection in which the sublattice is magnetized, For com-
plete dlsorder, <P> = 0, ‘The concepts of order and disor-
der used in.conjunction with Eq. (78) are not identical

with those used with Eq. (76). The correlation between
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spins at large distances can be such as to yield zero for
the expectation value of Eq. (78), while ylelding a finite
value for the expectation value of Eq. (76). In other
words, the spins at individual lattlice sites may be chang-
ing with time 1n such a way as to wash out the average z
component of spin, and yet be in step with the time varlia-
tlon of each other so that the average product 18 non-
zero, If, however, the sublattice magnetization is finite,
then the average z component of gpin at individual lattice
sites is not zero, and the spins are "pinned down" to point
mainly in the z direction., In this case, Eq. (78) bears
the following approximate relationship to Eq. (76),

N _ o Z
<F"Eq.(76) = lim  <8383,.> (79)

hdad

2 1im <S§><S§+§>
§> oo ©

1

% 2
<g%>
J

We will use this relationship later, when we compare values

of € with-no




In order to apply the Feynman theorem, 1t 1s necessary

to express the effective Hamiltonlan, Eq. (21), as an ex-

plicit function of Eq. (78). We repeat Eq. (21), with H,y

replaced by its elgenvalues with respect to the set of

states described in Eq. (18),

Hopp = By +3 ZaA+Za)A) + Hy + Hp + Hp

1th = . Thus Lanx+ La,=22a, and
w %a)\ }ZAa/M us Lant Lau = 26a) an
Za)\ =

D
VAN eff'

The Feynman theorem then yields

-
I

- <(5p>true ground state

D 12
=1 - ——~54§§5-9A{E0[1 + Cy(1-a)
433 (——2—-—)

+ Cq(l"&)

1 - D,y(1-a)? - Du(l-a)A - e,

where

- <DU> Ay
NY _ 2
QJSE(-—éQ-)‘ (a-27)

(s¥,)
(28%,-1)%

(80)

(81)

(82)

by ..og

(83)




and, for SKO = 1 {linear chain with spin one-half),

D) = - {3<F> ¢ RUASILIT 2y 4 }
835°(—2) (A~ (a-33)%
IS5 ( 5 ) (o 2J) (84)
S¥ -1
- i 7esn(s1)
2(4s¥,-3)"(28¥,-1) LI
3 8)’02 + 15\1(0 -
0
o 82K62 + 1550 -
+ 2(8?!0) 5
LA

-6ms%)+5}

and, for Slfo # 1 (all other cases),

D, = A 3<F> + —Jﬁi‘iil—'lkn A
4 2, N¥ 4 (6-33)° 171
835° (—~) -27) (85)

L2 2(5n° —32JA+50J 2y 22U, U >}
(a-37)2 (a-43)2 leitite

= (s%) {1152(86 )
8(as¥,-1)" (45¥,-3) 2(88,-1)° 0

0
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8% 2 + 51, - 51
64(8Y,)? 270

0

" 210862 + 450 - 459

+ 8(sY,)
o %2
139%.2 + 123), - 123
- 16(550)3 9) - 0
%o
12182 + 35, - 35
+ 12(8%y)% ~—-2 2 0 - BuN(sYy) + 45}.
0

The difference in the formg of D, for Séb = 1 and S&b #1

o fmer te 4 c 2
arises from the fact that in Eq. (52) <DU;,,Uj,,>g =0
_ c et
for Sﬁb = 1, and <IT7U;,,0;,,>; is finite for S§; # 1.

6. The Long Range Order in the Corrected
Spln Wave Theory

Turning again to the corrected spin wave theory,
we determine the expectation value for the long range or-
der operator, Eq. (78). In view of Eq. (58) and the
Hamiltonian, Eq. (60), application of the Feynman theorem
ylelds

-k OF (86)
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where E is the sum of Eqs., (63) und (64), The series for
lD is then

1 1
=1l-K g7 K5 oo (87)
where

¥ Y, 2 -1/2
K = 2@ - 250-07 7 -1,
A 0

K = TP L1 1-a)® - (1-2)"]

%242 ¥,%(1-a)% -1/2 % 2(1-a)? -3/2
L O e I
Ub 0 ?b

For a = 0, Ki is the spin wave correction to the
normalized sublattice magnetization (i.e., our long range
order parameter), and K2 = 0, conslstent with the result
of Oguchi,32

7. Comparison of the Methods for the Determination
of the Long Range Order

In Table V are gilven the values of D2 and D4 for
the cases investigated previously. In Table VI are given
the values of ¢ for the 1sotropic case (a=0) for the same
cases, listed under the heading "this work." Also given

in Table VI are the values of f predlcted by the corrected




68

spin wave theory and the hybrid method of Part (4), Sec-
tion C of this chapter. No values of P appear for the
latter two methods as applied to the linear chain, for
reasons similar to those gilven for the omisslon in Table
IV with respect to the determination of 7l[cf° Part (3),
Sectlon D of this chapter]. This omission will be dis~
cussed further in Section E.

The total sublattlce magnetlization, determined by
elther the modified perturbation theory or the corrected
spin wave theory, may be expressed in a form similar to

that in which the energy was expressed in Eq. (69); i.e.,

1 1
p=1- S¥ | (8%)" | (3%)7  (ss)
2
(1-a)%| ay; | a4, a4
i
(1-a)" i dpy | dpp o3
(l-—a)6 day dgo

The terms common to D2, D4, Ki, and Ké are

dll = 'Z]i": (89)
1
dip =%
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2
886 - 48 UO + 48

dyy = -
2
329,

22

which are determined from Eq. (83) and either Eq. (84) or
Eq. (85), or alternatively from Eg. {(87).

In order to determine the power of the spin wave ap-
proach versus the modified perturbation theory, we also
include in Table VI, under the heading of "overlap," the
contribution te P whlch arises solely from the four terms

common to both methods, i.e.,

overlap = 1 - (dll+d21)-s—%5 - (d12+d22)?é-§'——-§ :
°" (90)
It is apparent from Table VI that the overlap between
the two methods constiivaftes far and away the largest con-
tribution to the divergence of the sublattice magnetiza-
tlon from unity in the three dimensional cases. Not quite
so strong a statement may be made for the two dimensional
cases, and the modified perturbation method seems to be
the only satisfactory approach for the one dimensional
lattice., Thus, both methods are roughly comparable in
three dimensions, and one could not hope to obtain very
different results for the ground state sublattlice magneti-
zation by choosing one method 1n preference to the other.
The long range order parameter is larger in absolute

magnitude than the short range order parameter in almost
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all of the cases of the Tables IV and VI, At first glance,
it might be thought that '] should at all times be larger
than P, because of the comparative distances over which
correlation is belng measured. The fact that this is not
reflected in the computed values may be attributed to the
way in which our long range order parameter has been de-
fined, Our definition, Eq. (78), which is the only one
avallable to our theory, 1s not the proper analog of our
short range order parameter, Eq. (72), to lend itself di-
rectly to a comparison with’n. This was pointed out in
Part (4) of this section when we derived an approximate
relation between the correct analog, Eq. (76), and Eq.
(78). For comparison with the short range order parametern
we have included a table of pea Table VII, which is based
on the approximate relation, Eq. (79).

8., Comparison of the Theoretical Long Range
Order wlth Experiment

There are two experimental determinations of the
sublattice magnetization 1n real antiferromagnets in the
literature. They correspond to the measurement of the
sublattice magnetization in a body-centered cubic spin
5/2 system334 (the magnetic lattice in Man)g and of the
sublattice magnetization in a simple cubic spin 5/2 sys-
tem,35 (the magnetic lattice in KMnFB)°
The hody-centered lattlce, while of the two sublat-~

tice structure, has not been discussed heretofore because




of its essentially different nearest neighbor structure.
In the three lattices which have been considered; i.e.,
linear chain, plane quadratic, and simple cubic, the posi-
tions of the nearest neighbors define an orthogonal coor-
dinate system, and hence the 6 are linearly independent.
This is not true of the § corresponding to the body-~
centered lattice, and hence greater care must be taken in
determining the values of the sums over the reclprocal
lattice which lead from Eqs. (47) and (52) to the values
of the C, and Cy of Eq. (54)., Thus, substitution of
Xb = 8 in Eq. (54) does not lead to the values of C, and
04 which are characteristic of the body-centered lattice,
As a result, we omlt discussion of thls case here, except
to say that there is an apparent discrepancy between the
experimental results(p=l,OOi0.02), and the spin wave pre-
diction,(€=0.976). This same type of discrepancy appsars
in the simple cubic case, (KMnF3), and here direct com-
parison with the theory as presented in this dissertation
can be made.

The experimentally measured sublattlce magnetization
in KMnF3 has been determined to be p= 0.998 £ 0,015,
From Table VI, we obtain for the results of this disser-

tation, P= 0.977, and for the spin wave theory, p= 0.969,

The results of the spin wave theory are clearly in dis-
agreement with the experimental results, while the results

of thls work lie Jjust outside the possible expérimental
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error, With the calculation of additional terms of the
perturbation series, Eq. (82), 1t might be hoped P would
converge to a limit lying within the interval indicated
by experiment, That such 1s probably not the case is
shown by the following argument,

We conslder the contribution made to the terms D2 and
Dq, appearing in the perturbatlion series for the sublat-
tice magnetization, i.e., Eq. (54), by the terms of the
overlap, Eq. (90). Thus we have for D, and Dy in this ap-
proximation, using the results of Eq. (90), and putting
S =5/2, §o = 6,

D, % S—§5dll + le (91)
¥ 0,0178
and
Dy = §]§5d21 + (Sxi)edea
£ 0.0050.

Comparison of these approximéte values with the exact
values of Table V show D2 and Dh to be glven correctly by
the overlap terms to within 2%. If we assume this rela-
tionship to hold for arbitrary Dn’ then an upper limit to
the deviation from perfect order lies within 2% of the
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corrected spin wave deviation, and a lower 1limit to the

deviation 1s given by the present theory to fourth or-

der. Thus,

0.968 < (3< 0.977. (92)

Of course, Eqg. (92) is by no means rigorous, but it seems
to reflect the general trend of the perturbation series
for the sublattice magnetization.

The disagreement of the sublattice magnetization
predictions of both the corrected spin wave theory and
the perturbation theory with those of experiment thus is
not resolved, Considerations of canting in KMhFB, as
well as of anisotropy, fail to account for the difference.
Canting has been shown to have a negllglble effect on the
spin wave spectrum for the degree of canting present in

KMnF3°36 The anisotropy fileld, HA, in KMnF, 1s of the

3
order of 4 oe, while the exchange field, Hps 1s of the
order of 1.6 x 106 oe.37 The relatlionship between the an-
isotropy parameter a, Hﬁ, and HE for the sublattice mag-

netization is givsn by
&= E i E (93)

Eq. (93) is based upon the way in which a, H,, and Hp en-

ter into the spin wave expression for the sublattice




6

magnetization. Thus a is of the order of 10 ° for KMnF

39
clearly too small to affect our determination of Po
Experiments involving the determinatlon of the sub-
lattice magnetization for spin one-half systems, e.g.,
GuGlE*EHEO, where the theoretlcal deviation is much larg-
er, may make more clear hcw to correlate th§ory and exper-

iment. .

E. Convergence Properties of the Ground State
Parameter Series Approximations

To begin with, almost nothing can be said about the
convergence of series for which the form of the general
term 1s not known. Of the antiferromagnetic ground state
parameter series, the form of the general term is known
only for the energy and short ranée order serles corfes-
ponding to the linear chaln with spin one—half,19 In this
case, both serles are very nolsy, l.e., have no apparent
pattern for the sign of succeedlng terms, and the conver-
gence properties are not readlly assessable. For the
perturbation serles developed in this dissertation, the
discussion of the convergence properties will have to be
limited to comparison with the spin wave series, along
with comments on the relative magnitudes of succeeding

terms.




1. The Spin Wave Series

We 1list below the series approximations obtained
from the corrected spin wave theory for the ground state
parameters, The subscripts on the parameter symbols re-
fer to the dimensionality of the lattice, i.e., linear

chain, plane quadratlc, and simple cubic,

£ =1 +0.7268(k) +0.1321(35)% + ..., (94)
Op=1
' = 1y 1,2
-EE’:o_ =1 +0.316(35) + 0.025(55)° + ...,
D=2
E
= i 0.194(5%) + 0.009(35)% + ...,
D=3
Npep = = 1 +0.786(Z) - 0.756(Z)% + ..., (95)
Npez = = 1 +0.312(55) - 0.168(z9)° + ...,
Ppep = 1 - 0.394(gg) - 0.000(z5)% + ..., (96)

1l - 0.156('%3‘) - 0.000('@1"5)2 + s00y
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2., The Perturbation Series

Por comparison with Eqs. (94), (95), and (96),

we plck the spin one-half and spin two cases from Tables

I and V.

o
Ey

B
Ey

D=1
S=1/2

D=
S=2

D=2
S=1/2

D=2

S5=2

Eo

Ey

D=3
S=1/2

D=3
S=2

| ot

.

I

-y

1+ (1-a)2 - 0.2500 (1-a)* + ...,

(97)

+ 0.1429(l-a)2 + 0.0456(1-a)4 + vees

1 +0.0333(1-a)2 - 0.0065(1-a)% + ...,

+ 0.0667(1-2)2 + 0.0078(1-a)* + ...,

1 + 0.2000(1-3.)2 - 0.0008(1-3)4 + coey

+ 0.0435(1-2)2 + 0.0037(1-a)* + ...,

76




pep = - 1 +0.3333(1-2)2 - 0.0195(1-a)* + ...,
s=1/2 (98)

V) pep = - 1 +0.0667(1-a)? + 0.0234(1-a)* + ...,
S=2

Npeg = - 1 +0.2000(1-a)2 - 0.0024(1-a)" + ...,
s=1/2

7?D=3 = -1+ 0.0435(1-a)2 + 0.0111(1-a)4 t hees
S=2

(>D=2 =1 - o.2222(1—a>2 - 0.0356(1-a)4 = ey
s=1/2

(99)

- 0.0356(1-2)2 - 0.0136(1-a)" - ...,

lw)
il
1
-

1- 0.1200(1-a)2 - 0.0081(1-a)* - ...,

0
(v
]
u

fD;3 =1 - 0,0227(1—a)2 - o.oo61(1-a)4 - e

The apparent convergence of the perturbation serles 1s
relatively faster than that of the corresponding spin
wave series when the spin is small. This Jjudgment is

made solely on the basis of the magnitude of the ratio

7
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formed from the last two terms of each series. The nota-
ble exception to thils rule occurs in the case of the sub-
lattlice magnetization parameter, where the first order
correction to the spin wave theory is in all cases 2zero.
Higher order correctlons are not necessarily zero, how-
ever, and 1f they were available, the relative convergence

could -be discussed for this parameter in terms of them,




IV, PERTURBATION THEORY OF THE HEISENBERG
ANTIFERROMAGNET AT LOW TEMPERATURES

A, The Partition Function

We now turn to the consideration of the partition
function for a Helsenberg antiferromagnet. Kub038 has
given a perturbation expansion of the partitlion function
which is particuiarly sulted to the extension of the pre-
vious treatment of the ground state to include excited

states as well, According to Kubo,

exo (1) = g $SBLRE T (n) L),

Ho o

(100)
where H = Hb + Hi,

1. Zero Order and Perturbation Hamiltonians

Since Hb 1s an operator, we need a definition for
the operator 1/(E-Hb), We shall be concerned wilith the
trace of Eq. (100) with respect to a complete set of ei-
genfunctions of Hbg for which the definition of 1/(E-Hb)
1s immediate. If we identify the zero order and perturba-
tlon Hamiltonians with the divislon of the Hamlltonlan
used In the ground state perturbation calculation of Chap-

ter III, then we have the division indlcated in Eg., (21),
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We may think of Hb and Hi as expressed in lattice
space or in reciprocal lattlce space, i.e., in the form
of Eq. (2), Chapter II, or of Eq. (22), Chapter III, re-
spectively. For convenience in defining a complete set
of eigenfunctiohé—for Hb, we use the Hamilfonlan in the
form of Eg. (2). For calculational purposes, however, we
wlll insert the transformatlion to reciprccal lattlce space.

Thus the eigenfunctlons of Hb all take the form

¢(n,nln2) = lngnln2> (101)

where .n’nln2> represents a normalized elgenstate of Hb

in which there are n deviations from the Neel state, n;

of them on sublattice #l, and n, of them on sublattice #2.
Thus n, + n, =1, We do not here explicitly differentiate
among the many different configurations of the ny and n,
deviations, although thlis difference will figure impor-

tantly in later calculations,

2. The Partition Functlion to Second Order

The trace of Eq. (100) with respect to the states
of Eq. (101) is indicated by

gy 1 ,
Tr[exp(-/KH)‘] = nl:o e ==n<n,nln2|E—ﬁ-i%ﬁexp \-/5’)3:)
172 (102)

O
1 m_ 1 .
X [ H, ] dE|n,n,n,>.
ggo E-H,1 E - H In,nyn,

-—




We now propose to expand Eq. (102) explicitly in
terms of the operators D and U. Since U ralses the num-~
ber of excitations, n, and D lowers n, and because the
states of Eq. (l0l) are orthogonal in n, it follows that
all non-vanishing elements of the trace must have the num-
ber of D operators equal to the number of U operators.
Thus for zeroth order, we have no D or U operators. The
first order correction vanishes, and the second order
contains one D and one U operator. The third order van-~
ishes, and the fourth order contains two D and two U op-

erators, etc. Thus

N 1
Triexp(-4H)] = ZO y <n,n1n2l2,,ri¢exp(/5E)

n n1+n2=n (103)
X{X (E-]HOI>m E E HO
< 1 m 1 OQ 1 P 1 T
* L ERD TR 2 R TR

in which the zeroth and second orders have been indicated

explicitly.
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The solution to Eq. (103) in zeroth order is identi-
cal with that of the Ising model, H = Hb + I, The fact
that we do not know how to write down this solution in
three dimensions wlll not present a great deal of dilffi-
culty in the low temperature expansion to be derlved from
Eq. (103).

In order to develop a low temperature expansion of
Eq. (103), we investigate it as a function of exp (7£A/2),
since with /@= 1/kT, A> 0,

l’.}‘ioexp(-/ga/Q) —> 0, (104)

Since the states of Eq. (lOl) are also elgenstates of

Hy + 1, we may re-express the zeroth order of Eq. (103),

Tr[exD(ﬁgH)]zeroth order (105)

N
1 e -6E
- ngo nl+§2=n<n’n1n2|2rr1"?§’:‘%fd—.‘f—l x dE|n,n;n,>,

where En = EO + nA/2, Evaluation of the integral ylelds

Trlexp(AH) ] eroth order = €*P (TAEO){i (106)

+ exp( -ﬁA/2)nl+%2=l<l »nyn, |exp(-4I) |1, n,ny>




+ exP(7gaonl+££=2<29nlna|exp(7@I)|29n9n2> + ,.a},
where the expansion in powers of exp(-éhyz) has been made
explicit.

In the second order of Egq. (103), we may also re-
express the terms in a form similar to EqQ. (105), but now,
for convenlence of expresslon, it ls desirable to place
subscripts on the operator I which denote the sequence in
which all operators, D, I, and U, are applled. That is,
IO means that I 1s applied to the original eigenfunction,
|n,n1n2>, I1 is applied after the operator U is attached
to ‘n,nln2>. I_; is applied after the operator D is at-
tached to ln,n1n2>y etc, Thus we have for the second or-

der correction,

N
Y <n,nin,|s=+@exp(-4E)dE (107)
nZo n1+n2=n '} 2l2lli(ﬁ ﬁ

1 - 1
U = - n,n,n,>
I'E En IOI SO R~

D%

n 0 n+2

‘ 1
= exp(78Eo){<01[— DZ;;E;:ESFEU exp(7@IO)

+/6Dc§:%I:T57U exp(ﬁéio)]]o>




84

1
D__.____..._.._._
+ exp(/gq/g) 1<1,n1n2] = 11 ) U exp( /ﬁo

+/gD-(E+—Ii_'Ig)-U exp(-ﬁlo)]ll,nln2> + see

and
>3 |5ty Gexn (~E) (108)
<n,n.n, |z P0exp(-LE)dE 106
n=o nl+n2 ’ 1221]’195 ﬁ
N 1 D 1
*E-E, - I En o - I, E-E - Ioln’n1n2>
= exp(- <2,n IU exp (- ) Do
o) nl+n2 i ! (A+Iy-1,)"
le,n,n2>

+

exp (-B4/2) 1+3;_ <3,nyn, |U eXp(741_1)Dz2;E——E~Z;—

|3,n1n2> +oees

where we have carrlied out the expansion to the first power

in exp(Aa/2).
Thus, collection all terms of Eqs. (106), (107), and
(108), and using the relationships

I[o> = 0; Ifl,nyny> =0, (109)

which resnlt from the fact I measures the interaction




between indlvidual spin deviatlions from the Neel state,

and consequently requires at least two deviations to gilve
a finite measure. Eq. (109) will allow us to drop the

subscripts on I in the expression for the partition func~
tion below, since there remains only one posiltion 1n which
I gives a non-zero result. Thus we have for the partition
function in the low temperature limit, and to second order

in D and U,

Tr[exp(-,@H)]to second order (110)
_ _ - _ 1 1
= exp(/é‘EO){l <01[- D ————-——(A+I)2U +%D mu]|o>
+ 2 <2,n,n2‘UD—-L-—2-\2,n,n2> + 1
n,n,=2 (a+1) )
+ exp[-ﬂ(EO%)]{N + L <Lnny|l- D—t—U
ny+n,=n (A+T)
+ pp-(—%f)-U] |1,nn> + L <3,nn, [UD —— 3,n;n,>
b7 n, ,=3 (A+I)

+}

+ exp[-/(Ey+n) ]é )3 <2,nln2|exp(—/5’1)|2,nln2> + }
‘ 1 no=2
+ ..

Eq. (110) may be simplified by noticing that:
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<0|D —=— UO>= }: <2,n,n, [UD —=—|2,n;n,>, (111
and
X <l;h.n 1D —d Ull,n.-n> =
ny =1 'l’d (a+T)™ I 12

X <3,n,n,|UD —1 3,n.n,>,
nl+n2=3 M § 2| Qs+I)n| 12

Using Eq. (111), we get for Eq. (110),

Trlexp(BH) i, second order (112)

exp(-/@Eo){l +ﬁ<o|.D Z—}r—fU'l.o> + }

+

exp[-/@( 2)] N +/é’ i, _1<1,n1n2'D —(A——}LITU
ny

Il,nln2> + ...}

+

exp[ -A(Ey*a) {n +§1 Bz [exp(+£1)|2,n 0>
172"

+}

+ s 00

3. Relationship Between the Partition Function
Expansion and the Ground State Energy Series

Examining the first term in Eq. (112), we note
that it appears to be a power series expansion of an ex-

ponential in which the argument is Just the ground state




energy perturbation serles derived in Chapter III, Eq.
(32).

<o| expl~A(By-Drziyl + ...)1[0> (113)

= <o exp( /3B, L %DTElﬁYU + ... ]f0>.

In Appendix C, we examlne the fourth order perturbation
terms of Eq. (102), and find that Eq. (113) is valid to
this order also.

Thus, assuming the complete validity of Eq. (113) to
all orders, the term which in zeroth order corresponds to

(7@EO)’ goes over the exP(78Eground‘state)’ which is to

be expected,

B. The Exclted States

1., Perturbation Treatment for the General Case

Examining the terms in Eq. (112) which in zeroth
order correspond to exp[(-?@(EO +-%))], we find

a 1.
. +§:_1<1,n1n2|{éxp[78[E0 + % - Dyl ¢ °°°]}|19n1n2>
172"
(114)

= )y <l,nyn, I‘exP[ﬁ(Eo +%)] 1 +ﬁ ZA']i.-IsU

n1+n2=1

+ ...}Il,nln2>,

under assumptions similar to those leading to Eq. (113).




In Appendix C, Eg. (114) is also shown to be valid through
fourth order.

(114) does not make plain the relationship of the
exclted states to the ground state, but an explicit calcu-
lation will serve to do so. We take for the normalized
elgenstates llynln2>,

1/2
‘ 1,2 -
[1,1,0> = = o> = =& %exp@lbj)s)ll'.oz (115)

o3 fes

|2,0,1> = ==s/]o> 2 &= Zexp( -A'k) ST lo>

A L

Substitution of Eq. (115) into Eq. (11l4) yields

A+ I
n.+n,=1
P (116)

= exp[-A(E, + 2)]{N + -é— Z Z [<o|s DL—LUSA1,0>

m+l

+<o[s/\2 US |o»+...]},
a™

where we have made use of the Kronecker delta relatlon-

ships,

|
o>

%exp(i(/\-/\')-;y] = O At (117)

(]
[~<3

Eexp[i(/\%')-k] WA

)3 <l,n1n2lexp[-/8(EO + %)] 1 +/2D————4U + ,..}|l,nln2>
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The valldity of the binomlal expansion of the term involv-
ing the operator I depends, of course, upon the condition
that the expectation value of I/A have a magnitude of less
than unity. For the states involved in Eq. (114), this
condition will be fulfilled except for the linear chain
wlith spin one-half, which we treat separately later.

The symmetry of the operators D, I, and U with re-
spect to the sublattices indicate that both terms of the
sum over the reclprocal lattice in Eq. (116) are equal.
Therefore, we calculate only one of these. For the effect
of the operator I on USAijO>, we have by means of the def-
inition of I given in Eq. (20),

(-I)ms):l|0< = (2J)mUS-1 |o> (118)

+ (2J)m(2m-l)J(l-a)(-12\T)};ﬁ%%

X (Sﬂi)(Sf/ggWQ)(S/{1+/41)io>°

Insertion of Eq. (118) into Eq. (116), with the subse-
quent commutation of STAI operator through all operators
until it operates on Sﬁlg and the final evaluation of the

resulting terms, yields

D
nl_':%_2‘_1<1 nln2| exp| ﬂ(E + )]{1 +ﬂD——-——-——U + ..,.,}I.':,nlr)1.2>
119




2/1 .12
= exp[-AE, + 51N + NA S + AJ_A(E al~(s¥,)

% 3(1- ]
x (1-<sxo)(§>§;‘2> B0 (51 ) (1-(5%) ;
O‘

N

b
- ﬂb' _?_ "—L = ®o0o0 yo
(510 T |

Reversing the process indicated in Eq. (114) allows us to
write for the energy of the first exclited states,

_ _ _<DU>
e N{E A - 2J + o800 (120)

Eeirst excited states 0

2
A 1-3)2 (1-a)=(8Y,)
*3l1 +3 28)’221) " 2[5y, 1) > (ﬁ))% %2 * ]}

(L20) indicates that there are N first excited states,

each of which lles near the ground state;, as indicated by
the presence of the ground state energy perturbation se-
ries appearing in EqQ. (120). The lncremental difference
between the ground state and the flrst excited states is
given by the terms proportional to A/2 in Eq. (120).
There are N/2 dilfferent increments, each characterized by
a different A, Thus each X corresponds to a doubly degen-
erate energy level, The dlspersion relation for the first
excited states in thls second order approximatlon 1s then
given by the relationship between the Ilncremental energy

and the reciprocal lattice wave vectors A
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‘AE%irst exclted states (121)

2
:9[14,_(1_1:@12_;-&%%@%12@_4_ ]
2 2 283631 . 2{S O~1 2%2

2, Comparison with Spin Wave Theory

The first excited state energy derived by means

of the spin wave theory is given byll
A ) 2 5.1/2
AErirst exclted states ='§[15“ sz(l"a) ] (122)
0

Examination of Eq. (121) for large spin, (the condition of
validity for the spin wave theory), reveals Eq. (121) to
be the first two terms of a binomlal expansion of Eq,
(122). This is precisely the kind of relation which we
found for the comparison of the perturbation and spin
wave treatments of the ground state, There is an lmpor-
tant difference, however, which affects the usefulness

of Eq. (121).

The relatlive merits of the spin wave approximation
versus the perturbation technique for the determination
of the low temperature properties of real antiferromagnets
depend upon the amcunt of anisotropy present. The very
nature of the perturbation technlque indlcates its appll-~
cability to antiferromagnets with strong anisotropy. The

zere order Hamiltonian represents the complete suppression




of any contribution from the off-axis components of the
spin, and in order to represent the isotropic Hamiltonian,
the contribution from the off-axis compenents must be com-
pletely restored. In the ground state problem, it was un-
necessary to go this far in order to achieve an excellent
representation for the energy, and relatively good repre-
sentations of the short and long range order. In the case
of the excited states, however, because of the Boltzmann
factor, greater importance is attached to the lowest en-
ergy elgenstates of Eq. (121), and it is Jjust these states
which are most affected by the presence of an anisotropy.
A finite anisotropy, no matter how small, removes the de-~
generacy between the lowest of the exclted state energles
and the energy of the ground state, thereby introducing an
energy gap.39
The ground state 1s adequately represented by a few
ocrders of the perturbatlon because its deviatlion from the
Neel state ls determlned by a sum of unweighted contribu-
tions from all of the modes of the lattice. The term "un-
welghted" is used here to indicate the absence cof a Boltz-
mann factor in the ground state sum. The relatlively poor
representation of the adjustment in the ground state ener-
gy via zero-polnt fluctuations associated with a long
wavelength, which give only a small contribution to the
total adjustment of the ground state energy because of the

nearly perfect allignment of spins in a long wavelength
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mode, are easlly compensated for by the much more adequate
representation of the short wavelength;,; high energy zero
point fluctuations. This property of the perturbation ex~
pansion 1s of little avail when it comes to determining
the low temperature behavior of an antiferromagnet, where
i1t is the low energy, long wavelength modes which are most
Important.

The important properties of both the perturbation and
spin wave treatments of the excited states can best be
seen when compared with the one exact treatment for these
states.40 This may be done as soon as our treatment of
the general case 1ls extended to the case of the linear
chain with spin one-half,

3. Perturbation Treatment for the Linear Chain
with Spin One-Hal?f

We now return to the development of our perturba-
tion series at the point of Egs. (107) and (108). Here
we must regard the fact that for some states of the linear
chain coupled with spin one-half, all three energy de-
nominators are equal., This is reflected in the fact that
the binomial expansion used in Eq. (116) is not valid for
these states, and consequently the expression in Eq. (119)
cannot be evaluated for 8 = 1/2, ¥, = 2. Instead of tac-
1tly assuming that the mlddle energy denominator of Eqs.
(107) and (108) differs from the other two, we evaluate

the integrals in the following manner,
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N
Y <n,nqn,|s2+Qexp(-4E)dE
an=0 nq +ny=n 1 2|2Tf19§ /g
l l I1. l
xE-HO—IDE-HO-I”E-HO-Iln’nln2>
-1 L s kfen (M
n=0 n;-+n,=n (EO+—2—+IO)
D _&2 U— L {n,nln2>
X I JaY n
E - [Ey + .(___L_2 + 1,1 E - (By+R41,)

exp[ -B(Eg- 0, )

(123)

]

= <n,n.n,|DU
nz=o +§1=n Pty l[E0+-(-’l%A+Il-(EO

-expl -4( Eo+9§ﬁo) ]
(n+2)A _ na 2
[Eo + + I (E0+———2 +I0)]

2

-/5exp [-A( Eo+%+lo) ]

>
na _ (n+2)A }I n,nyny
[Eo + 53+ I (EO+ 5 +Il)]

which, in the limit as Il + A —> IO’ i.e., when all

energy denomlnators are equal,

N

= 1im Z n. +a

<n,n.n, |DU
I>I +a n=0 1™ *T1ve

na 2
5 +Io)]

three
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7@exp[-ﬂ (E 1——+Io)] 1
X{EO + % + 1, - (E0+LJ'§-2A+II)J|n’n1n2 )

In place of Eq. (108), we get

N
m o Y )Y <n,n1n2[UD‘ (124)
IO+A-> -1 n=0 n1+n2=n

~Bexp [ -B(E 8+ }1
X n,n
B, +nA+I -(E+f-n—214+11) g

The term with n = 1 in Eq. (123), and the term with
= 3 in Eq. (124) provide us with the entire contribution
which is proportional to exp[-,ﬂ(Eo+a,/é)]. In the limits
indicated in Egs. (123) and (124), this contribution van-
ishes. The vanishing of this term corresponds to the
omission of the term in Eq. (119) whlch is proportional
to (A-4J) . Thus we arrive at the following instead of

(121)
AE = 2J[1 + (1-2)2 - (1-a)? Xi\g]. (125)

In Figure 2, we show the dispersion curves for the spin
one-half coupled linear chain in this approximation, the
spin wave approximation, and the exact solution. From

Figure 2, it 1s apparent that Eq. (125) best approximates
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the exact solution in the short wavelength reglon, l.e.,
A15|w= /2, This bears out what was previously sald
with regard to the treatment of the ground state. For the
treatment of the exclted states, however, the large gap
which is evlident in Figure 2 between the lowest states and
the ground state in thls order of the perturbation, pre-
cludes the use of this theory to obtain meaningful low
temperature thermodynamic behavior for real antiferro-
magnets. Higher order corrections are not llkely to close
this gap rapldly, in the sense that the presence of even
a small gap profoundly modlfles the low temperature be-

havior,




V. SUMMARY

Perturbation series for the ground state parameters
of the Heisenberg antiferromagnet, i.e., the energy, short
range order, and long range order, have been presented in
a quite general form through fourth order in the perturba-
tion Hamiltonian., The final zero order Hamiltonian is the
Ising model, H = 2J<§C>S§S;, and the final perturbation
Hamiltonian consists of the off-axis components of the in-
teraction. The problem of the N-body divergence, present
in any stralghtforward Raylelgh~Schrodinger perturbation
treatment based on the Ising model, has been handled in a
unique way. The choice of an initial zero order Hamil-
tonian other than the Ising model makes possible the gen-
eration of ordinary Rayleigh-Schrodinger perturbation
series 1n which the N-body divergence is cancelled in each
order, thus satisfying the requirement that a systematic
method be used to eliminate non-physical contributions
from the serlies. After the N-body divergence problem has
been handled using the initial zero order Hamiltonlan, a
way is found to predict certain infinite classes of terms
belonging to the original perturbation series. The inclu-

sion of these terms in the perturbation correction is

shown to be equivalent to a shifting of the definltion of
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the zero order Hamiltonlan tc the Ising model,

The perturbatlon corrections to the energy, short
range order, and long range order of the Neel state are
exhiblted as explicit functions of the spin and number
of nearest neighbors, and also of an anisotropy parame-
ter which essentially gives the order of the perturbation
series. For comparison, equivalent expressions are de-
rived for the standard spin wave treatment of the ground
state. This procedure allows a complete analysis of the
relationshlip between the two methods. On the basis of
this analysis, it 1s found that the present method is
superior to the spin wave method for the treatment of the
ground state short range and long range order parameters
in all one dimensional problems, and that it holds an ad-
vantage also ln the treatment of the spin one-half cases
in two and three dimensions,

Experimental determinations of the sublattice msg-
netization in real antiferromagnets show a slightly larger
value for the sublattice magnetization of the ground state
than that predicted by either the perturbation technique
presented in thils dissertation, or the spin wave theory,
Though the results of the perturbation treatment are clos-
er tc the experimental findings than are the results of
the spin wave theory, complete confidence cannot be placed
in the assumption that higher orders of the perturbation

wlll not further lower the perturbation results. On the
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basis of the analysis of the relatlionship between the two
methods, 1t is reasonable to belleve that the exact sub-
lattice magnetization for the Heisenberg model ground
state lles somewhliere between the spin wave prediction and
the perturbation prediction.

The treatment of the first excited states of the
Heisenberg antiferromagnet by means of the perturbatlion
theory show the anisotropy to have a strong influence up-
on the energles of the lowest of these states. Thus, be-
ginning with a zero order Hamiltonlan which 1s very aniso-
tropic, and calculating only a few orders of the perturbs-
tion series, an adequate representation for the energies
of these states is not found., It 1s concluded that one
should rely on a continuation of the spin wave treatment
of the states in the manner presented by Oguchi32 for any
improvement in the representation of the low lying ex-

cited states.
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TABLE I

Qualitative Results of Previous Methods Used to Compute the
Sublattlice Magnetizatlon of the Ground State

Fini%i gﬁgiztiice Iinear Chain ngéigzic Simple Cubie
Magnetization? S=1/2 S>l/2 8=1/2 S21/2 S=1/2 8>1/2
Anderson No No Yes Yes Yes Yes
Kubo Yes Yes Yes Yes Yes Yes
Kasteleijn No
Taketa and No No
Nakamura
Marshall No No No
Fisher Yes Yes
Davis Yes Yes Yes Yes Yes Yes
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TABLE IX

The Perturbation Correction

Lattice

to the Energy

S=1/2

S=1 S=3/2

S=2

Linear Chain: This Work
Linked Cluster

Plane Quadratic: This Work
Linked Cluster

Simple Cubic: This Work
Linked Cluster

Linear Chain: This Work
Linked Cluster

Plane Quadratics Thig Work
Linked Cluster

Simple Cubic: This Work
Linked Cluster

Linear Chain: This Work
Linked Cluster I
Linked Cluster II

Plane Quadratic: This Work
Linked Cluster I
Linked Cluster II

Simple Cublec: This Work
Linked Cluster I
Linked Cluster II

1.0000
1,0000

0.3333
0.3333

0,2000
0.2000

0.3333 0.2000
0.3333 0.2000

0.1429 0.0909
0.1429 0.,0909

0.0909 0,0588

0.0909 0,0588
Cy

0,1429
0.1429

Q.,0667
0.,0667

00,0435
0,0435

=0, 2500
-0.4590

«0,0065
-0.,0098

"0 ° 0008
=0,0015

0.0782 0.,0591
0.0292 0,0284

0.0251 0,0099
0.0123 0,0098

0.,0055 0.0045
0,0054 0,0045

E/Ey(a=0)*

0.0456
0,0226

0,0078
0,0078

09,0037
0,0037

1,1992
1 o 1985
1,1996

1.4115 11,2591
1,3625 1,2284
1,3567 1.2287

1.1680 1.1008
1.1552 11,1007
1.,1563 1,1027

1.0964 1,0633
1,0964 1,0633
1.0973 1,0643

101285
1.1655
1.1686

1.,0745
1.0745
1.0765

1.0472
1.0472
1.0481

*The greater the magnitude of thls term, the lower the cor-

regsponding energy, since E,

E, <0,

0
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TABLE III

Comparison of the Perturbation and Spin Wave

Corrections to the Energy

104

E/Eo(a=0)
Lattice S=1/2 S=1 S=3/2 S=2
Iinear Chain: This Work 1.,7500 1.4115 1.2591 1.1885
Corrected Spin Wave® 11,8589 1.3964 1.2569 1.1900
Hybrid Method 1.7651 1.4485 11,2903 1,2144
Plane Quadratic: This Work 1.327 1.168 1.101 1.075
Corrected Spin Wave 1,341 1.164 1.108 1.081
Hybrid Method 1.322 1.177 1.109 1,081
Simple Cubic: Thls Work 1,199 1,096 1,063 1.047
Corrected Spin Wave 1.203 1.099 1,066 1.050
Hybrid Method 1.199 1.099 1,066 1.049

*
Spin wave approximation + first order correction.




TABLE IV

Comparlson of the Perturbation and
Spin Wave Corrections to the Short Range Order

~N(a=0)
Lattice S=1/2 8=1 S=3/2 S=2
Linear Chain: This Work 0.7500 0.4321 0.6227 0.7203

Plane Quadratic: Thls Work ©.686 0.782 0.879 0.910
Corrected Spin Wave 0,970 0,796 0.822 0.850
Hybrid Method 1.038 0.763 0.822 0.851

Simple Cubic: This Work 0.802 0.907 0.928 0.945
Corrected Spin Wave 0.856 0.886 0,915 0.933
Hybrid Method 0.877 0,903 0.916 0.933
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TABLE V

The Second and Fourth Order Corrections to the
Long Range Order

D

2
Lattice S=1/2 =1 S=3/2  8=2 S=5/2
Iinear Chain 1.0000 0.2222 0,1200 0,0816
Plane Quadratic 0.2222 0.0816 0.0496 0.0356
Simple Cubic 0.1200 0,0496 0,0311 0.0227 0.0178
Dy
Linear Chain 0.2500 0.1433 00,0687 0.0458
Plane Quadratic 0.0356 0,0270 0.0181 0.0136
Simple Cubic 0.0080 0.0107 0.0083 0,0061 0,0050
‘p(a=0)
Linear Chain -0.2500 0.6345 0.8113 0.8726
Plane Quadratic 0.7422 0.8914 0.9323 0.9509
Simple Cubic 0.8720 0.9397 0.9606 0.9712 0.9772
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TABLE VI

107

Perturbation and Spin Wave Corrections to the Long Range
Order of the Isotropic Ground State

pla=0)
Lattice S=1/2 S=1 S=3/2 S8=2 S=5/2
Linear Chaln:
This Work -0.2500 0,6345 0,8113 0.8726 -
Plane Quadratic:

This Work 0.7422 0,8914 0,9323 0.9509
CorrectedlSpin Wave 0.607 0,803 0.869 0.902
Hybrid Method 0.597 0.801 0,868 0,902
Overlap 0.752 0.893 0.933 0,951
Simple Cubic:

This Work 0.8720 0,9397 0.9606 0.9712 0.9772
Corrected Spin Wave 0.844 0.922 948 0,961 0,969
Hybrid Method 0.848 0.922 0.948 0.960 0.969
Overlap 0.868 0.940 0.961 0.972 0.977
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TABLE VII

The Square of the Long Range Order Parameter for Comparison
with the Short Range Order Parameter

p=(2=0)
Iattice S=1/2 S=1 S=3/2 S=2
Linear Chain: Thils Work -- 0.403 0,658 0.761

Plane Quadratic: This Work 0.551 0.794 0.869 0.904
Simple Cubic: This Work 0.760 0.884 0.924 0.943
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APPENDIX A

In this Appendix we calculate the sixth order energy
correction, For the general case with arbitrary spin and
lattice, we proceed as far as the sixth order equivalent
of Bq. (52), Chapter III. For the case of the linear
chaln with spin one-~half, we continue on to determine ex-
plicitly the sixth order energy correction, which is found
to be identical to that found for this case by a dlfferent
method.19 The desirability of such an effort lies with
l1ts implication that we have indeed recovered the Ising
model as a zero order Hamiltonlan, at least through six
orders of the perturbation.

We begin by considering Eq. (53), Chapter III. By
applying the relationships indicated in Eq. (40) and (51),
the operators I which are superscripted with the symbols
P, r, 8, and 4 may be replaced by the explicit expression
of thelr effects upon the U and D operators of the matrix
elements, In performing this replacement, we are aided
by the Hermitian property of the matrix elements, in par-
ticular by the fact that <0|DIDI” | = (lIrUIpU|O>)+. Fol-
lowing this replacement, the sums over p, r, 8, and q may

be performed to give in place of Egq. (53),
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(1-43/4) (1-33/5) 3m

+

+ 3<DPUI™DU, 5, Ty 4 o>

b(3/m)2 D7D ,DImUU1U1,>
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+ (1-3J/A)2 o + 3<D7 7,UI DU1U1,>R]
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(1-43/0) (1-33/a)® 3"
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+ 3<D78nD7,8UImDU12vU1,2>R]}.

Here we have subscripted the D operators with the sub-
scripts T77' and 88!, These have an entirely equivalent

meaning with respect to the D operators as the 1l' and
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22' subscripts have wlth respect to the U operators. Sub-
seripts utilizing the intermediate numbers 33' to 66! will
be needed when the operator ™ is replaced.

In order to perform the sum over m, we need to know
the effect of I™ on U3|o>, UU UL, [0>, VU ,,Up,,[0>, 2nd
020>, DUJU, >, DUy, Up,,[0>. This is determined in a
manner analogous to that used to determine the effect of
the operator ™ on U210>, that is, by applying successive-
1y higher powers of the operator I to each term. As we
saw in the series of equations leading to Eq. (51), i.e.,
Eqs. (42) and (44), each application of the operator I
serves to introduce new terms derived from the old by link-
ing two operators with a new subscript, as in Eq. (42) and
Eq. (44). When all operators have been linked with a sub-
script, e.g., U;jpiUpip|0>, Eq. (45), the resulting com-
pletely linked function i1s an eigenfunction of I, and the
production of new terms ceases upon further application

of I, There are sixteen dlfferent operators which can be

We list them, utilizing an extension of the subscript no-
tation begun when the different linked operators formed
from U2 were defined. For clarlty, we follow the list with
the explicit expression for some of these subscripted op-

erators, the definition of the others followlng directly.

e




(A2n)
(A20)
(A2p)

U3

’
W].Ul ts

LUPY
UoUy Uy 1010

Ul'2"

UgiUigUz s

U0y 51Up s

UgUpo131Up 10
U31U21301 10
Ua31U1301 1015
UogiU121Yy 13
RETE P RPE
UsyU1o13103 10015
UgyiUppr3inU 10
Ugiy1U301307 1000
Usyi51U30131501 101
UsyigieUioi3isVirongre

The definltions of UUlUl, and UU12,U1,2 being simple exten-

siong of UlUl' and U12,U1,2, whose definitions were given

in Eqs. (43) and (45), respectively, we begin with the

definition of U,U,U

U0, 0y 1 pi0> = (

ESCENER IR A AR NS (432)

K BE5e XA%¥ 6
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We are now In a position to express the application
of T to U3 o>, UU Uy, |0>, and VU Uy, ,[0>, in terms of a
linear comblnatlon of functions made up from the operation

of Egs. (A2) to the Neel state, By successive application




of the operator I, we determine that,

g3l o> = (-20)™ 3%03|0> + 6(4™-3%)uU, Uy, |0> (Al)

+ 3(5%-2.4™437) (U0 5, Uy 4 o [0>HUU3 Uy 4 50 [ 0>
+U2,U12U1,|O>+2U2U12,Ui,l0>)

+ 2(67-3,5™43.41-3") (3U3U) 5, 51Uy 4 [ 0>
+3U3,U12,3Uit40>+3U23,U13U1,2,|O>+U23,U12,U1,3|0>)

+ 3(7™-4,6™46,50-4 4043 x (2U34,U12,3,U1,24|0>
+ U34U12'3'U1'24'|°> + UgyiUppi314Up 100>
* Uz Up 013Uy 1 o4 [0>)

+ 6(8%-5,7™+10.6M-10.5%45, 4™-3™)

% (Ugy15:012131501124]0>)

+ (9"-6.8M+15,7™-20,6™+15,5™-6, 4™+3™)
x (U34'5'6U12'3'5U1'246'|°>%w

and for the operation of ™ onto UU1U1J0>, we determine

that

™o, Uy, o> = (-2J)m{ﬁmUU1U1,|o> (45)
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+U2,U12Ui,|0>+2U2U12RU1,|o>)

+ (6m~2.5m+4m)(3U3U12|3|U1|2‘0>+3U3'U12’3U1’2'0>

+3U23,U13U1,2,|O>+U23,U12,U1,3'0>)

+ 2(7m—3.6m+3.5m-4m)(2U34,U12,3,U1,24[0>
U1 01310 Up oy |02+ Ug 15140 10[0>
#3101 91307 104(0>)

+ 5(8M-4. 76,64, 5 Usy 15, Uy 5131507 1y

+ (9™-5,8M+10,7™-10,6%+5, 50-41)

x (U34'5'6U12'3'5U1'246'|°>)}'

{o>

Pinally, for the operation of ™ to UU12,U1,2'0>, we get

m),.m 0>
Uy, ,[0> = (-27) {5 U, 5, UL 2

m
0T 5,
+ 2(6™-5") (UgUy 55Uy 1 o] 05405, Up 55U 15[ 02)

+ (T0-2.6™5™) (20 o>

341U10131U719y
+U34U12,2,U1,24,’O>+2U34|U12,3,4U1|2l0>
+U3,4U12,3U1,24lo>)

+ 4(8m'3.7m+3o6m'5m)U3415|U12]3|5U1124l0>

(46)

+ (9m-4.8m+6.7m—4.6m+5m)U34.5'5U12'3!5U1'246'l°>}‘
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For the successive application of I to the functions
Du?| 0>, DU U;,|0>, and BU,,U;,,[0>, we cannot use the
definition of I given in Eq. (20), Chapter III, since it
was defined only in terms of 1ts application to U-llke op~-
erators., If, however, we first commute the D operator
through all U-like operators until it operates on the Neel
state, we are left with functlons which involve only U-llke

operators, i.e.,

¢

1pu? jo> = I™[2<@>U[0> + R|0>] (A7)
= 2<@>U[0> + R|0>; m = 0
= (-23)"[2<q>U[o> + R'[0>]; m # 0
where
e = (2
r'| 0> = (-N)J3(l-a)3w§ﬁ ?fw?&% (48)
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Ny -1, - +
+ 4(’5) (S“:L ' +0(l%l) (S_,‘?(Ql -(X2—A2) 1.

In order to simplify the expression of the results

which follow, we introduce the followlng abbreviation,
p02jo>(2) = [2<e>ufo> + R'[0>]. (49)
For successive applications of I to DUlUl,l0>, we get

m m 213
U, Uy, [0> = I[2(5)¥,<>U|0> + Ry [ 0>] (A10)

DU, U, ,| 0> m = 0

1V

(~2J)mDUlU1.‘O>(l); m# 0

Since all U-like operators are maximally connected

in DUy ,,Up 5 (0>, we get
m - n :
I"DUy 5 Uy 1o 0> = (-23)™DU,, U 5[05.  (A11)

The insertion of Eqs. (A4)~(A7), and Egs. (A10)-(All)
into Eq, (Al), with the subsequent summation over the in-
dex m, results in the sixth order analog of the fourth
order expression given in Eq. (52), Chapter IIL. Thus we
have completed the first phase of the Appendilx,

The second phase consists of determining the explicilt

8ixth order energy correctlon to the linear chain coupled
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spin one-half, The first step 1n this operation is to
write out the results of the summation over the index m
for those matrlx elements which contrlbute to this case.
If, after the summatlon over the index m, a matrix element
has a coefficient involving the factor (1-4JA3)—1, then
the correspondling matrlx element must be null for the case
of the lipear chain wilth spin one-half, If this were not
the case, then the perturbation series would diverge,
since (1-4J/A) = 0 for this case. We prove this for two
matrix elements in Appendix B, and assume 1t for the rest.
The summation over the index m for the terms contributing
to the sixth order energy correction under the above as-

sumption thus ylelds

(1‘3)6 _ 1 {<D3U3>‘R A(J/A)<2 SJ/A)<U UUl 1!
fs1/2,%, 125 ((1-2/0005 * (1-33/6)(1-83/32) (1- 2JAA>5
(A12)

8/3(30)2(2-53/0) [<DPULU, Uy 5 > + <D, Uy U iR

3
+ 2<D°U,U; 5, Ug  >p>

(1-103/3a) (1-33/5) (1-83/a) (1-23/A)°

Mmm)<DD,mmﬂI
(l 3JAA) (1-83/3n) (1- 2JAA)




8/3(JAQ)3[<D7D7,DU2U1U1,2,>R + <D,D., DU,

+ 2<Dy Dy DURU, 5 Uy (g

1Uy2U1 1R

+
(1-103/35) (1-33/4) 2(1-83/3p) (1-23/n) *
L {%DQUDUQ>R 2(JAQ)<D2UDU2>R(1)
- +
s | (1-23/0) " (1-23/a)°

4(3/)<DPUDU Uy > 8(J/a)2<D2UDUlU1,>R(l)
+ +
(1-37/a) (1-23/n)" (1-37/a) (1-23/a)°

. 4(J/A)2<D7D7,UDU1U1,>R X 8(J/Q)3<D7D7,UDU1UIPE(1) }
(1-33/n)2(1-23/a)" (1-33/8)2(1-23/p)°

There are apparently fifteen matrix elements to com-
pute in Eq. (Al2)., We can use the Hermitian property of
the matrlx elements to reduce the number of elements, since
they are not linearly independent. Uslng the relationship
<0|p31 - (103]0>)*, along with Eq. (A4) with m = 1 and Eq.
(A5) with m = 1, we obtain

‘ - (- 3
<DPIVU, Uy, >p = 2J){3<D VU, Uy, >p + 6<D7D7.DUU1U1,>R}

(A13)

- 3
( 2J){4<D3UU1U1,>R + <DV, 5, U4 >y

+

<DPULU U (p1>g + <DUp,Up Uy 1 >p

+

2<D3U2U1,2,Ul,>R}.
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For 8 = 1/2, ¥, = 2, Eq. (A13) yields

: 3 -
DI Uy (1> + <Dy, Uy Uy > + 2<DULU) 5,0y v>g

3 (AL4)

since <D3UU12,U1,.2>R = 0 for thils case, Thils is one of
the matrix elements which we show explicltly to be null
in Appendix B,

Using the same Hermitlan property and a combination

of Eqs. (A4)-(A6), we obtain the following two egualities,

3
<DPTULU, Uy 4 p1>g + <DV, Uy JU; > + 2<DPIU

1291 17R 2U121U712R
(A15)

- 3
( 2J){5[§D3U2U1U1,2,>R + <DL, U Uy >y

+

‘2<D3U2U12,U1,>R]

3
+ 2[2<D3U3U12,3,U1,2>R + 2<DU5, Uy 51501 1>

+

3<D3U23,U13U1,2,>R + <D3U23.U12,U1,3>R]}

(-2J){3[>D3U2U1U1,2,>R + <02, UL UL g

+ 2<D3U2U12,U1,>R]

+ 6[<D.D DUQU

7D > + <D,D.

19112 7071 D51 Uy 505 1 >g

+ 2<D7D7,DU2U12,U1,> ]}.
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Since for the case of the linear chain with spin one-

half we have assumed the following null relationshilp,

2<D3U3U12,3,U > + 2<D°U Uy 01501 1578 (A16)

1'2°R

+ 3<D3U23,U13U1,2,>R + <D3U23,012,Ui,3>R = 0,
we obtaln for this case,
<DyDyy DUV Uy 4 o>, + <DpDo DU, Uy oUg 4> (A17)

+ 2<D7D7,DU2U12.U1,>R = 1/3

1/3[ <D3U.U, ,U

2U1 U102 <D3U2'U12U1'>R

+

3
2<D7ULU, 5, U >g].

With the reationships Eq. (Al4) and Eq. (Al7), the
numbe? of independent matrix elements is reduced to nine
for Eq. (Al2).

The first step in the calculation of these nine ma-
trix elements 1s to commute each D-like operator through
all U-llke operators until it operates upon the Neel state,
The results are then glven in terms of the commutators be-
ﬁween D and U as defined in Chapter III, Section A, Part 2.
It should be remembered that the subscript R on the matrix
élements Indicates that all terms proportional to powers

of N greater than one are to be disregarded, as shown in




Chapter III, Section A, Part 2, Thus we get for the nine

matrix elements of interest,
<335y = 2<k'R> + <, (A18a)

_ 72 ot +
<D3UU1U1,> = 6(N)XO<F><Q> + <R'Ryq > + <RjRy > + <V 4,3,

(A18Db)
= U(2
<D7D7|DUU1U11>R = il-(N)Ko<F><Q> + 2<F17><Q1'7'?A18C)
2,2, 2
+ 2<F1'7><Q17'> + 4(-_ﬁ) %o <Q>3
+ <RY . R.,,> + <RT__ R, ,> + <V >
7718110 177171 17
<D2UDU2>R = «a'tps, (A184)

<D?UDU,U) > = 2(2)y (<F><Q> + <R'R;;,>, (Al8e)
<D/ D, UDU; Uy >, = L&)y ,<F><e> + 1(8)2y2>3 + <RI Ry 0>
(A18¢)

<D2UDU2>é1) = <R'R™>, (A18g)

<D2UDU1U1,>(1) = 2(B)Y j<F><q> + <R'R™>, (418h)

<D7D7.UDU1U1,>I(21) = 4(-1‘3-)){0<Q><F> + 4(%) 23'(2)<Q> + <RZ;7,R'>.,

(A181)
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To complete the evaluation of these matrix elements,
the commutators of Eqns. (18a-i) are replaced by their ex-
pressions in terms of spin operators, being careful to ob-'
serve the linking of operators indlcated by the suﬁscripts.

The resulting general expressions are then,

6 6 NY, 15 2-15y  +ho
33>, = < %'g) (—2)2° x{la(sb’o)G (15% 45 o*0)
0 % (A192)
-1 (37, 2+2y,-2)
0 4 0 0
- 216(8%)° <3 + 24(s%) x
0 0
- 54(8\(0) + 9}9
D7q_.16 N
<D3UU1U1,>R = & f{lga) ( 20)26 x {6(326)6 (A19b)
0
6. 6¥,3+181 %63y +19
x 6(3%)°1 > ]
0
2 -
- 1a(sy )5[27fo3+16b’0 11,77
0 Xo3

12¥.2+21Y. -21
+ 6(81p) sy - 5U(sY)3 + 9(s%)%
0

2
XO
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To complete the evaluation of these matrix elements,
the commutators of Egns. (18a~i) are replaced by their ex-
pressions in terms of spin operators, being careful to ob-_
serve the linking of operators indlcated by the subscripts.

The resulting general expressions are then,

2
% U5y, +40)

6 6 N‘( 15
<33, = 2 (;'g) (—2) 2 x{lz(sko)G ( =T
0 0 (Al9a)

X 2 -
- 216(sY, )5 D5+ 2h(sY )4 (399" *255-2)

3
S 7%
= 54(8\0,0) + 9 ’
6 NX
<D3UU1U1,>R =4 f{lga) ( 2 0 x {6(5%)6 (A19Db)
67,3418, %630, +49
x 6(5¥%)° ﬂ o
5. 2% 34169211777
- 12(8¥,)°( 3 ]
Yo
12) 2421y -21
+ 6(81p) T2 01 - 5h(s¥)3 + 9(s))?
0
6 6 Ny.
<D,D, DUV, Uy >, = d (?f 2) ( 20)2 (19¢)

0
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by 32&63 + 132&’02 - 351, + 203

¥y

x {+ (s?{o)6 4%

11,3 + 101%,2 - 46, - 77

- 2(3J0)5 )(03

2
)i 670" + 14TY, - 147

+ (8%, — - su(sy)3 + 9<sefo>2},
0

6 6 N
<0Pupu?>; = 2 ;1;‘1) ( ;(0)26(80/0)2 (A194)
0

2
y (15, -458,+40) ¥y-1
5o - 48(s%)° 37

x{u(szro)

4y B3y -
+ 4(s¥)2 ( 0;2 0™3) 8(s¥,) + 1},
0

6 6
2 - J(1-a)
0

(A19e)

67,5 + 18,% - 63 + 49
Yo'

x{2(8%)6

A 3x02 + 20 -2
YyE

2
Y,2 +6¥, - 6
2

- 8(8Y,)°
° %

+ 6(836

- 8 (s%)3 + (s9)® L.




61 _\6 NYu ¢
<D Dy, UDU Uy >p = J (.15. g) (—2)2° (A19f)
0

oyt s any3 4 1852 - 99y, + 67
x{(S?fo)6 0 0 0 2l

Yy
2 -2
Yo  * 30y -3 y 5Yp° + 38, -
- 16(5Y)° -2 520 -+ 4(8%) x
-8 (5103 + ()%,
6116
<0?upu®>{t) = L (%‘3) (N)E,/Q)r:‘6 (A19g)
¢ (%-1)° 5 Yol
x{36(s?fo) —L— - 58(s),)° 25
Y, %

)4 4Y02 +33’0 -3

+ 4(38y, Yoa

- 8(5%)3 + (7)%),

(1) 220 56)2 (Al9h)

<DPUDU 101 o)

3 2 2..6,
x{12(s%)6 To” * b’o){4 o +3
0

2 L 6y. -6 302 + 2y, - 2
Yo ;a?fo 4—6(3){0)4 0 Xaxo
0 0

- 8(8Y,)°
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- 8(s)3 + <s>fo>’-’}»

(1). £a-2)% Mo 6

<D, Dy, UDU, Uy ,>p 3 (— (A191)
0
6 Xy*+@%3+3%2—18%-+9
X{}-P(Sb,o T
0
2 2
Y3 + 3% -3 5§4° + 30, - 3
- 16(8%,)° —2 2 0 + 4(3)5)4 L2
0 0

- 8(sy,)3 + (safo)e}.

Putting S = 1/2 and Kb = 2 into Eqs, (Al9a-i) and
using Eqs. (Al4) and (Al7), provides numerical values for
all necessary matrlix elements in the calculation of the
sixth order energy correction for the linear chain with
spin one-half, Substitution into Eq. (Al2) yields

(1-2)6 _ 19
ES=1 /2’(0___2 = 0, 1n agreement with Walker,
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APPENDIX B

In this Appendix, we show explicltly that, for the
linear chalin wlth spin one-half,

<D3UU12,Ulj2>R =0, (Bl)
and

ey =
<DUDU; 5, Uy 1 g = O (B2)

Eqs. (Bl) and (B2) represent typical terms resulting
from Eq. (53), Chapter III, which have denominators which
vanish for this case, It should be reallzed that the
vanishing of the denomlnators, coupled with the vanishing
of the matrix elements, does not indlicate an indeterminacy
in the evaluation of the corresponding term in Eq. (53).
In the course of computing succeedlng orders of the per-
turbation correction, matrix elements like Egs., (Bl) and
(B2) appear with finite coefficients early in the series.
It is at thls point that thelr null property should be
taken into account, and not after the sum of all possible
coefflcients throughout the perturbation serles has been
determined for a glven matrix element under the assumption

that 1t 1s not null.,
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We consider first the form of <DSUU, Uy, >pe
3 PN - o+
<D UU; 5, U; 1 o> = 6<Q12,><r1,2> + <R'Ryq1901> (B3)
+ <RV Ry, > + <V >
1218112 11122177

whilch is determined by means of the commutators of D and
U defined in Chapter III, Section A, Part 2. The sub-
scripts refer to the linking of operators discussed in
Appendix A, Substitution of the commutators with their
expressions in terms of spin operators, and the subsequent

evaluatlon of these expressions, yields

6/1_.16 NY
D50y o = 5 ()2 (B4)
0

' 10){02 + 2T, - 27

+ 6(sY, Yoa

-%w%ﬁ+9w%ﬁ}

which for S = 1/2, Xb = 2, glves

<D3UU, 5, Uy 4555 = O (B5)
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2
For the form of <D UDU12‘U1,2>R, we find upon apply-

ing the commutation relatlons between D and U,
2 _ +
<DUDU; 5, Uy 1 5>g = 2<Q351><Qq 15> + <R Ryq1001>s (B6)
which, upon replacement of the commutators with their

equivalents in terms of spin operators and subsequent

evaluation therecof, ylelds

6. _\6 NI
<DPUDU, 5, Uy, oo = & é}zal_ (—2)2° (B7)
0
-1)2 !
x{72(s750)6 %—zr)- - 72(8%)? *(*'La“)'
2 %

" 16362 + 180, - 18
5
2’0‘

+ (S)) - 8(8%)3 + (%)%}

Substitution of S = 1/2, XO = 2 into Eq., (B7) then yields
the predicted result,

2
<D"UDU; 5, Uy, 5>g = O. (B3)
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APPENDIX C

In this Appendix, we will compute the fourth order
perturbation corrgction to the partition function as it
is expressed in Eq. {103), Chapter IV. The computation
18 not carried out to the point of providing a numerical
correction, expressed as a function of spin and lattice,
but only so far as to show the vallidity of relationships
such as Eq. (113) and Eq. (114) to fourth order. The
fourth order perturbation correctlon ls glven by the non-

vanlshing elements of A

Y <n,nn,|z2+exp (-4E)dE (c1)
nwruﬂbﬂl, ld2Wi¢ ﬁ

v 1 om__1 T, 1 .n_1
x n>1:=o(E = HOI) T Ho(D+U)nz$o(E = HOI) o HO(D+U)

S 1 - _1 =1 _.ya_1
x pZ___O(E - HOI) = HO(D+U)QZ=O(E - Ho::) 5 HO(D+U)

[~ =g :

Z 1 r 1
X .....__......_._I nnn>e
I,=O(E-HO)E-%1’12

The non-vanishing elements of Eq. (Cl) are, of course,

those 1n which the number of D operators 1s equal to the
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number of U operators. These terms correspond to the fol-

lowling ordering of the D and U operators,

DUDU, (c2) |
UDUD,
DUUD, | ,
UDDU,
DDUU,

and uuDD,

Evaluation of the corresponding slx integrals obtained
from Eq. (Cl), and an expansion of each in powers of exp
(—ﬂA/a),‘ ylelds the following result for the sum of con-
tributions from all six integrals, plus the zeroth and

second order corrections of Eq. (110).

/
Tr[exp(7/§H) ]to fourth order \03)

exp(-/5Eo){1 + <00, |0> + nl+§2=2<2,n1n2 |og J2,nynp>

+

)} <)+,nn|0 |4nn>}
. 17207l e
nl+n2—4

+

exp[-/g(EO+A/2) {N + nl_,_§2=]_<l,nlnzlO.A_ll,nln2>

+

Y <3,n;n,|04]3,n,n>
n, 4,=3 »Aynp |Op|3,nym;,

+ <5nn O,..5nn>}+ v0 e
n1+%2=5 sy, | u' R ;
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where

' 1 1 1
0, = [~ D—=—x5U + 2Dp—=UD- U (Ch)
A (a+I)2 (A*D) ™" (n41)3

1 1 " 1 1 1
+D UD U - DD ity U
(A+I)2 (A+I)2 +1 (2A+I)2 (A+I)

1 n

L iy
2a+I) (p+I)

1 1 _op—L ¢ 1 1 gL
PG - PGP e P e ET) R

+ /)’E/Q[D(AiI)UD(A}rI)UJ,

1 .o 1 1 i gl
% = @y Py " AT PG P )2 (¢3)

1

- r ) | R | R |
(A+I)JD?A+I)2JD(A+I) * (A+I)‘JDZA+ISDZ2A+15UZA+I5

1 1 .01 L1 1 ] 1
R NS ) I (TN L(A+I)JD(A+17]+/K[A ¥ IUDZA+ISUD(5+I5]’

1 1 1 1
O = 22 F T (D) PG () (c6)

The properties of the D and U operators allow the
following relationships to be used to simplify Eq. (C3),

P

e




n .%—h —2<2:) nln2 ' OB! 2, I’).].l’l2> = <0 ! Oé ,O>, (C,_I.)
172"
Z <4, nlneloc} 4,nln2> = <O|O\,')!0>, (C8)

ny+ny=4

>— _ <3; n1n2‘0B|3: nln2> z B <l,n1n2l Oé]l,nln2>,
n,+tn,=3 n.+n,=1
tE L (c9)

]

L <5,nn,[04]5,nn> L <lL,nyng|04|1,nn>,

n,tma. =5 n, M. =1
12 1™ (c10)
where
1 1 1 1
oL = D U -2D UD U - D UD-
% ° (0+1)2 BAI) ™ (n 41)3 (a+T)2 (A+I)2 (1)
c1l
+ 2DT—5D(——- U] +/§[ UD—-—-—U]
A+T SI( +I 2 A‘+I (A+I) ?
1 1 1
0}, = D U—=—1, (c12)
¢ o) (2a+1)2 (a+T)

For the terms proportional to exp (76E0), the sim-
plified expression for the partition function to fourth

order is

exp(/ﬁ’h ){1 +@[<0[Dm)-u]o> =] +I YD
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+ <ofz ~+:r I“‘(.emr) (A+I)Jl">}

+ 132/2'[<0|J}(A%_I)UI}(A_J!‘_I)UIO>]} .

We see that Eq. (Cl3) represents an expansion to
fourth order, i.e., through all terms involving at least

two D and two U operators, of the followlng exponentlal,

Ny 1. 1, .
<O|eJCp[-/5(EO-D(A+I)J+D(A+I)JD(A+I)2 U (c1l4)

D@iI)D(aalﬂ)T‘}(Z'T}LI U+ ...)]f0>.

In addition, the expectation value of -146 times the
argument forms precisely the same perturbation series for
the ground state as was determined in Chapter III. This
may be seen by simply utilizing the binomial theorem to
obtain

2
<DU> _ <DIU> , <PI“U>
<o Dz—;f)-U,O> = - BT (c15)

A

<DU>2  3<DUS<DIU>
< DK—TUD—————~—U 0> =
O’ a+£) ' A3 AN A

6<DU><DT u>
A2

eeo ey
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<D° U > <D2UTU>  <DOTUSS

| PP rasT Uy Ol 0> = TR T
. <Prurvs | <pf1%u?> | 3<0P1vfus |
207 8P 2n°

If Eq. (Cl5) is substituted into the argument of

(ci4), all the terms of the ground state perturbation
series of Eq. (32), Chapter III, in which there are only
two D and two U operators or less are accounted for, Thus
Eq. (113), Chapter IV, i1s valid through the fourth order
of the perturbationo

To show Eq. (114) through fourth order, we take the
terms of Eq. {C3) whilch are proportional to
exp [( %(E +A/2)], and introduce the simplifications
indicated in Ega (C9-12). We get

exp [/§(EOW2)]{N +/g <‘1,n1n2' (c16)

nl+n =]

U - UD-—41-—-U

x +I = (04T)2

. T
* ]i'A+I) (en+1) 41\+1) vl 1, f1f2”

2 1 1
+ 6°/2 2 <l,n.n [D(—-TUD(—-—TU]:I n,n.>
o njtng=l  * 2| Py Oy v o

I et B




Examination of fq. {C16) shows that, to fourth order,

it represents the expansion indicated in Kq. (1L14),
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